




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省孝感市安陸市第一中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等比數(shù)列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.52.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.3.已知直線為拋物線的準(zhǔn)線,直線經(jīng)過拋物線的焦點(diǎn),與拋物線交于點(diǎn),則的最小值為()A. B.C.4 D.84.直線的傾斜角的取值范圍是()A. B.C. D.5.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn),且,則()A.4 B.2C. D.6.從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),其中偶數(shù)的個數(shù)為()A.24 B.18C.12 D.67.九連環(huán)是我國從古至今廣為流傳的一種益智游戲,它由九個鐵絲圓環(huán)相連成串,按一定規(guī)則移動圓環(huán)的次數(shù)決定解開圓環(huán)的個數(shù).在某種玩法中,用表示解開n(,)個圓環(huán)所需的最少移動次數(shù),若數(shù)列滿足,且當(dāng)時,則解開5個圓環(huán)所需的最少移動次數(shù)為()A.10 B.16C.21 D.228.已知函數(shù),則()A. B.C. D.9.已知隨機(jī)變量服從正態(tài)分布,,則()A. B.C. D.10.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直11.命題“,”的否定為()A., B.,C., D.,12.在中,,則邊的長等于()A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線具有相同的焦點(diǎn),,且在第一象限交于點(diǎn),設(shè)橢圓和雙曲線的離心率分別為,,若,則的最小值為_______.14.二項(xiàng)式的展開式中,項(xiàng)的系數(shù)為__________.15.已知數(shù)列滿足,則其通項(xiàng)公式_______16.若圓C:與圓D2的公共弦長為,則圓D的半徑為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)任意,恒成立,求的取值范圍.18.(12分)【2018年新課標(biāo)I卷文】已知函數(shù)(1)設(shè)是的極值點(diǎn).求,并求的單調(diào)區(qū)間;(2)證明:當(dāng)時,19.(12分)已知數(shù)列的前項(xiàng)和為,且.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米(1)求底面積,并用含x的表達(dá)式表示池壁面積;(2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?21.(12分)設(shè)函數(shù)(1)求在處的切線方程;(2)求在上的最大值與最小值22.(10分)球形物體天然萌,某食品廠沿襲老字號傳統(tǒng),獨(dú)家制造并使用球形玻璃瓶用于售賣酸梅湯,其中瓶子的制造成本c(分)與瓶子的半徑r(cm)的平方成正比,且當(dāng)cm時,制造成本c為3.2π分,已知每出售1mL的酸梅湯,可獲得0.2分,且制作的瓶子的最大半徑為6cm(1)寫出每瓶酸梅湯的利潤y與r的關(guān)系式(提示:);(2)瓶子半徑多大時,每瓶酸梅湯的利潤最大,最大為多少?(結(jié)果用含π的式子表示)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由等比數(shù)列性質(zhì)求出公比,將原式化簡后計算【詳解】設(shè)等比數(shù)列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C2、A【解析】準(zhǔn)確畫圖,由圖形對稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率【詳解】設(shè)與軸交于點(diǎn),由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心,又點(diǎn)在圓上,,即,故選A【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點(diǎn)問題,需強(qiáng)化練習(xí),才能在解決此類問題時事半功倍,信手拈來3、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長公式可求的最小值.【詳解】因?yàn)橹本€為拋物線的準(zhǔn)線,故即,故拋物線方程為:.設(shè)直線,則,,而,當(dāng)且僅當(dāng)?shù)忍柍闪ⅲ实淖钚≈禐?,故選:D.4、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設(shè)直線的傾斜角為,則,解得.故選:A.5、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點(diǎn),可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因?yàn)闉閽佄锞€上一點(diǎn),所以,解得.故選:B.【點(diǎn)睛】本題考查了平面向量加法的坐標(biāo)運(yùn)算,考查了求拋物線方程,屬于基礎(chǔ)題.6、C【解析】根據(jù)題意,結(jié)合計數(shù)原理中的分步計算,以及排列組合公式,即可求解.【詳解】根據(jù)題意,要使組成無重復(fù)數(shù)字的三位數(shù)為偶數(shù),則從0,2中選一個數(shù)字為個位數(shù),有種可能,從1,3,5中選兩個數(shù)字為十位數(shù)和百位數(shù),有種可能,故這個無重復(fù)數(shù)字的三位數(shù)為偶數(shù)的個數(shù)為.故選:C.7、D【解析】根據(jù)題意,結(jié)合數(shù)列遞推公式,代入計算即可.【詳解】根據(jù)題意,由,得.故選:D.8、B【解析】求出,代值計算可得的值.【詳解】因?yàn)椋瑒t,故.故選:B.9、B【解析】直接利用正態(tài)分布的應(yīng)用和密度曲線的對稱性的應(yīng)用求出結(jié)果【詳解】根據(jù)隨機(jī)變量服從正態(tài)分布,所以密度曲線關(guān)于直線對稱,由于,所以,所以,則,所以故選:B.【點(diǎn)睛】本題考查的知識要點(diǎn):正態(tài)分布的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題10、B【解析】通過判斷直線的方向向量與平面的法向量的關(guān)系,可得結(jié)論【詳解】因?yàn)椋裕浴危驗(yàn)橹本€的方向向量為,平面的法向量為,所以,故選:B11、A【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因?yàn)槊}“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A12、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負(fù)值舍去)故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意設(shè)焦距為,橢圓長軸長為,雙曲線實(shí)軸為,令在雙曲線的右支上,由已知條件結(jié)合雙曲線和橢圓的定義推出,由此能求出的最小值【詳解】由題意設(shè)焦距為,橢圓長軸長為,雙曲線實(shí)軸為,令在雙曲線的右支上,由雙曲線的定義,由橢圓定義,可得,,又,,可得,得,即,可得,則,當(dāng)且僅當(dāng),上式取得等號,可得的最小值為故答案為:【點(diǎn)睛】本題考查橢圓和雙曲線的性質(zhì),主要是離心率,解題時要熟練掌握雙曲線、橢圓的定義,注意均值定理的合理運(yùn)用14、80【解析】利用二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】二項(xiàng)式的通項(xiàng)公式為:,令,所以項(xiàng)的系數(shù)為,故答案為:8015、【解析】構(gòu)造法可得,由等比數(shù)列的定義寫出的通項(xiàng)公式,進(jìn)而可得.【詳解】令,則,又,∴,故,而,∴是公比為,首項(xiàng)為,則,∴.故答案為:.16、【解析】首先根據(jù)圓與圓的位置關(guān)系得到公共弦方程,再根據(jù)弦長求解即可.【詳解】根據(jù)得公共弦方程為:.因?yàn)楣蚕议L為,所以直線過圓的圓心.所以,解得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的遞增區(qū)間為,遞減區(qū)間為(2)【解析】(1)先求出函數(shù)的導(dǎo)數(shù),令、解出對應(yīng)的解集,結(jié)合定義域即可得到函數(shù)的單調(diào)區(qū)間;(2)將不等式轉(zhuǎn)化為,令,利用導(dǎo)數(shù)討論函數(shù)分別在、時的單調(diào)性,進(jìn)而求出函數(shù)的最值,即可得出答案.【小問1詳解】函數(shù)的定義域?yàn)椋之?dāng)時,,當(dāng)時,故的遞增區(qū)間為,遞減區(qū)間為.【小問2詳解】,即,令,有,,若,在上恒成立.則在上為減函數(shù),所以有若,由,可得,則在上增,所以在上存在使得,與題意不符合綜上所述,.18、(1)a=;f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增.(2)證明見解析.【解析】分析:(1)先確定函數(shù)的定義域,對函數(shù)求導(dǎo),利用f′(2)=0,求得a=,從而確定出函數(shù)的解析式,之后觀察導(dǎo)函數(shù)的解析式,結(jié)合極值點(diǎn)的位置,從而得到函數(shù)的增區(qū)間和減區(qū)間;(2)結(jié)合指數(shù)函數(shù)的值域,可以確定當(dāng)a≥時,f(x)≥,之后構(gòu)造新函數(shù)g(x)=,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得g(x)≥g(1)=0,利用不等式的傳遞性,證得結(jié)果.詳解:(1)f(x)的定義域?yàn)椋琭′(x)=aex–由題設(shè)知,f′(2)=0,所以a=從而f(x)=,f′(x)=當(dāng)0<x<2時,f′(x)<0;當(dāng)x>2時,f′(x)>0所以f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增(2)當(dāng)a≥時,f(x)≥設(shè)g(x)=,則當(dāng)0<x<1時,g′(x)<0;當(dāng)x>1時,g′(x)>0.所以x=1是g(x)的最小值點(diǎn)故當(dāng)x>0時,g(x)≥g(1)=0因此,當(dāng)時,點(diǎn)睛:該題考查的是有關(guān)導(dǎo)數(shù)的應(yīng)用問題,涉及到的知識點(diǎn)有導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值、導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系以及證明不等式問題,在解題的過程中,首先要保證函數(shù)的生存權(quán),先確定函數(shù)的定義域,之后根據(jù)導(dǎo)數(shù)與極值的關(guān)系求得參數(shù)值,之后利用極值的特點(diǎn),確定出函數(shù)的單調(diào)區(qū)間,第二問在求解的時候構(gòu)造新函數(shù),應(yīng)用不等式的傳遞性證得結(jié)果.19、(1);(2).【解析】(1)利用,結(jié)合已知條件,即可容易求得通項(xiàng)公式;(2)根據(jù)(1)中所求,對數(shù)列進(jìn)行裂項(xiàng)求和,即可求得.【小問1詳解】當(dāng)時,.當(dāng)時,,因?yàn)楫?dāng)時,,所以.【小問2詳解】因?yàn)椋裕蕯?shù)列的前項(xiàng)和.20、(1)1600,(平方米);(2)池底設(shè)計為邊長40米的正方形時總造價最低,最低造價為268800元.【解析】(1)根據(jù)題意,由于修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時池底每平方米的造價為150元,池壁每平方米的造價為120元設(shè)池底長方形長為x米,則可知總造價s=,x=40時,則.故可知當(dāng)x=40時,則有可使得總造價最低,最低造價是268800元.考點(diǎn):不等式求解最值點(diǎn)評:主要是考查了不等式求解最值的運(yùn)用,屬于基礎(chǔ)題.21、(1)(2),【解析】(1)對函數(shù)求導(dǎo),然后求出,,運(yùn)用點(diǎn)斜式即可求出切線方程;(2)利用導(dǎo)數(shù)研究出函數(shù)在區(qū)間的單調(diào)性,即可求出函數(shù)在區(qū)間上的最大值與最小值【小問1詳解】,,,所以在點(diǎn)處的切線方程為,即.【小問2詳解】,因?yàn)椋耘c同號,令則,由,得,此時為減函數(shù),由,得,此時為增函數(shù),則,故,在單調(diào)遞增,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年幼兒園上年工作方案
- 高三下學(xué)期《好心態(tài)、好狀態(tài)》主題班會課件
- 2025年電子視力測量儀項(xiàng)目可行性研究報告
- 閱讀區(qū)自制圖書教案
- 2025年玻璃卡項(xiàng)目可行性研究報告
- 2025年特氟龍加熱器項(xiàng)目可行性研究報告
- 2025年燃煤添加劑項(xiàng)目可行性研究報告
- 上海財大北郊高級中學(xué)2025年高三下學(xué)期期末復(fù)習(xí)檢測試題(一模)數(shù)學(xué)試題含解析
- 長江藝術(shù)工程職業(yè)學(xué)院《體育舞蹈理論與實(shí)踐Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州食品工程職業(yè)學(xué)院《私教實(shí)踐指導(dǎo)》2023-2024學(xué)年第二學(xué)期期末試卷
- 實(shí)驗(yàn)六.二組分金屬相圖
- 汽車發(fā)動機(jī)氣缸體氣缸蓋平面度測量教學(xué)實(shí)訓(xùn)任務(wù)
- 教學(xué)課件:《數(shù)據(jù)結(jié)構(gòu)》陳越
- 梁長虹解讀碘對比劑使用指南第二(呼和浩特)
- 電壓互感器課件
- 口腔檢查-口腔一般檢查方法(口腔科課件)
- 畜禽養(yǎng)殖場排查情況記錄表
- 2023年高考全國甲卷數(shù)學(xué)(理)試卷【含答案】
- 弗雷德里克 桑格
- 淺談初中數(shù)學(xué)單元整體教學(xué)的實(shí)踐 論文
- 歷史時期的地貌變遷優(yōu)秀課件
評論
0/150
提交評論