




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省黔西縣2023年高二上數學期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖①所示,將一邊長為1的正方形沿對角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.2.若拋物線的焦點與橢圓的左焦點重合,則m的值為()A.4 B.-4C.2 D.-23.有7名同學參加百米競賽,預賽成績各不相同,取前3名參加決賽,小明同學已經知道了自己的成績,為了判斷自己是否能進入決賽,他還需要知道7名同學成績的()A.平均數 B.眾數C.中位數 D.方差4.設函數,若的整數有且僅有兩個,則的取值范圍是()A. B.C. D.5.已知直線和直線互相垂直,則等于()A.2 B.C.0 D.6.命題“”的否定是()A. B.C. D.7.已知函數,則曲線在點處的切線與坐標軸圍成的三角形的面積是()A B.C. D.8.已知拋物線,則其焦點到準線的距離為()A. B.C.1 D.49.函數的圖象如圖所示,是f(x)的導函數,則下列數值排序正確的是()A B.C. D.10.已知函數,若,,則實數的取值范圍是A. B.C. D.11.已知隨機變量服從正態分布,且,則()A.0.1 B.0.2C.0.3 D.0.412.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓C交于A,B兩點,且,則______14.設直線的方向向量分別為,若,則實數m等于___________.15.已知曲線在點處的切線方程是,則的值為______16.射擊隊某選手命中環數的概率如下表所示:命中環數10987概率0.320.280.180.120.1該選手射擊兩次,兩次命中環數相互獨立,則他至少命中一次9環或10環的概率為_________________.(結果用小數表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,橢圓的離心率為,且點在橢圓C上(1)求橢圓C的標準方程;(2)過點的直線與橢圓C交于A,B兩點,試探究直線上是否存在定點Q,使得為定值.若存在,求出定點Q的坐標及實數的值;若不存在,請說明理由18.(12分)已知.(1)當,時,求中含項的系數;(2)用、表示,寫出推理過程19.(12分)如圖,在三棱錐中,側面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點.過MN的平面與側面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值20.(12分)已知數列滿足,,數列前項和為.(1)求數列,的通項公式;(2)表示不超過的最大整數,如,設的前項和為,令,求證:.21.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數的取值范圍22.(10分)已知函數.(1)求的單調區間;(2)討論的零點個數.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點在面上的投影為的中點,由俯視圖可以看出C點在面上的投影為的中點,所以其左視圖為如圖所示的等腰直角三角形,直角邊長為,于是左視圖的面積為故選:A.2、B【解析】根據拋物線和橢圓焦點與其各自標準方程的關系即可求解.【詳解】由題可知拋物線焦點為,橢圓左焦點為,∴.故選:B.3、C【解析】根據中位數的性質,結合題設按成績排序7選3,即可知還需明確的成績數據信息.【詳解】由題設,7名同學參加百米競賽,要取前3名參加決賽,則成績從高到低排列,確定7名同學成績的中位數,即第3名的成績便可判斷自己是否能進入決賽.故選:C.4、D【解析】等價于,令,,利用導數研究函數的單調性,作出的簡圖,數形結合只需滿足即可.【詳解】,即,又,則.令,,,當時,,時,,時,,在單調遞減,在單調遞增,且,且,,作出函數圖象如圖所示,若的整數有且僅有兩個,即只需滿足,即,解得:故選:D5、D【解析】利用直線垂直系數之間的關系即可得出.【詳解】解:直線和直線互相垂直,則,解得:.故選:D.6、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結論進行否定即可.【詳解】命題“”的否定是“”.故選:C7、B【解析】根據導數的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B8、B【解析】化簡拋物線的方程為,求得,即為焦點到準線的距離.【詳解】由題意,拋物線,即,解得,即焦點到準線的距離是故選:B9、A【解析】結合導數的幾何意義確定正確選項.【詳解】,表示兩點連線斜率,表示在處切線的斜率;表示在處切線的斜率;根據圖象可知,.故選:A10、A【解析】函數,若,,可得,解得或,則實數的取值范圍是,故選A.11、A【解析】利用正態分布的對稱性和概率的性質即可【詳解】由,且則有:根據正態分布的對稱性可知:故選:A12、D【解析】根據拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設為:則準線方程為:解得:則拋物線的標準方程為:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】將圓的一般方程化為標準方程,結合垂徑定理和勾股定理表示出圓心到弦的距離,再由點到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標準方程可得,圓心為,半徑圓C與直線相交于、兩點,且,由垂徑定理和勾股定理得圓心到直線的距離為,由點到直線距離公式得,所以,解得,故答案為:.14、2【解析】根據向量垂直與數量積的等價關系,,計算即可.【詳解】因為,則其方向向量,,解得.故答案為:2.15、11【解析】根據給定條件結合導數的幾何意義直接計算作答.【詳解】因曲線在點處的切線方程是,則,,所以.故答案為:1116、84【解析】先求出該選手射擊兩次,兩次命中的環數都低于9環的概率,由對立事件的概率可得答案.【詳解】該選手射擊一次,命中的環數低于9環的概率為該選手射擊兩次,兩次命中的環數都低于9環的概率為所以他至少命中一次9環或10環的概率為故答案:0.84三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,定點的坐標為,實數的值為【解析】(1)由題意可得,再結合,可求出,從而可求得橢圓方程,(2)設在直線上存在定點,當直線斜率存在時,設過點P的動直線l為,設,,將直線方程代入橢圓方程消去,利用根與系數,再計算為常數可求出,從而可求得,當直線斜率不存在時,可求出兩點的坐標,從而可求得的值【小問1詳解】由題意知結合,可得,所以橢圓C的標準方程為,【小問2詳解】設在直線上存在定點,使為定值,①當直線斜率存在時,設過點P的動直線l為,設,·由得,則,,所以為常數則,解之得,即定點為,則②當直線斜率不存在時,即動直線方程為,不妨設,,此時也成立所以,存在定點使為定值,即18、(1)(2),過程見解析【解析】(1)寫出函數的解析式,利用二項式定理可求得函數中含項的系數;(2)利用錯位相減法化簡函數的解析式,求出解析式中含項的系數,再結合組合數公式化簡可得結果.【小問1詳解】解:當,時,,的展開式通項為,此時,函數中含項的系數之和為.【小問2詳解】解:因為,①則,②①②得,所以,,而為中含項的系數,而函數中含項的系數也可視為中含項的系數,故,且,故.19、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質定理可證明.(2)由平面平面ABC,取BC中點O,則平面ABC,可得,由條件可得,以O坐標原點,分別以OB,AO,OP為x,y,z軸建立空間直角坐標系,利用向量法求解即可.【小問1詳解】因為M,N分別為AB,AP的中點,所以,又平面PBC,所以平面PBC,因為平面平面,所以【小問2詳解】因為平面平面ABC,取BC中點O,連接PO,AO,因為是等邊三角形,所以,所以平面ABC,故,又因,所以,以O為坐標原點,分別以OB,AO,OP為x,y,z軸建立空間直角坐標系,可得:,,,,,所以,,,設平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平面PAC所成角的正弦值為20、(1),(2)證明見解析【解析】(1)利用累加法求通項公式,利用通項公式與前n項和公式的關系可求的通項公式;(2)求出并判斷其范圍,求出,利用裂項相消法求的前n項和即可證明.【小問1詳解】由題可知,當n≥2時,=當n=1時,也符合上式,∴;當時,,當n=1時,也符合上式,∴;【小問2詳解】由(1)知,∴,∵,;∵,,,,,∴設為數列的前n項和,則.21、或【解析】先分別求出,為真時,的范圍;再求交集,即可得出結果.【詳解】若是真命題.則對任意恒成立,∴;若為真命題,則方程有實根,∴,解得或,由題意,真也真,∴或即實數的取值范圍是或.22、(1)單調遞增區間是和,單調遞減區間是(2)時,有1個零點;或時,有2個零點;時,有3個零點.【解析】(1)求解函數的導數,再運用導數求解函數的單調區間即可;(2)根據導數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省南通市紫石中學2025屆中考模擬金典卷數學試題(三)試題含解析
- 食品生產加工分公司合同
- 四川省大教育聯盟2025年高三聯考B卷歷史試題含解析
- 四川省綿陽市東辰高中2025屆高三下學期畢業班調研測試物理試題含解析
- 離婚協議書模板:個人合同指南
- 食品批發電子合同協議
- CIF和FOB合同在的運用與挑戰
- 贈與合同模版
- 標準范文短期汽車租賃合同范本
- 新版個人住宅買賣合同
- 河南省洛陽市強基聯盟2024-2025學年高二下學期3月月考歷史試題(原卷版+解析版)
- 2025屆上海市奉賢區高三語文二模試卷作文題目解析及范文:達克效應
- 2024年新瓦斯檢查工國家考試題庫
- (一模)桂林市、來賓市2025屆高考第一次跨市聯合模擬考試地理試卷(含答案詳解)
- 飾品干貨知識培訓課件
- 2024-2030年中國高純銅行業發展監測及發展趨勢預測報告
- 2022城市道路照明設施養護維修服務規范
- 2024年9月21日浙江省事業單位統考《職業能力傾向測驗》真題及答案
- 獸醫病理學基礎試題及答案
- 2025屆金麗衢十二校高三語文第二次聯考考場高分作文點評:“效率至上”與“深度求索”
- 轉正述職報告與工作展望
評論
0/150
提交評論