甘肅省蘭州新區舟曲中學2023年數學高二上期末復習檢測模擬試題含解析_第1頁
甘肅省蘭州新區舟曲中學2023年數學高二上期末復習檢測模擬試題含解析_第2頁
甘肅省蘭州新區舟曲中學2023年數學高二上期末復習檢測模擬試題含解析_第3頁
甘肅省蘭州新區舟曲中學2023年數學高二上期末復習檢測模擬試題含解析_第4頁
甘肅省蘭州新區舟曲中學2023年數學高二上期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省蘭州新區舟曲中學2023年數學高二上期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓:與圓:的位置關系是()A.內切 B.外切C.相交 D.相離2.下列說法中正確的是()A.棱柱的側面可以是三角形B.棱臺的所有側棱延長后交于一點C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等3.拋物線有如下光學性質:平行于拋物線對稱軸的入射光線經拋物線反射后必過拋物線的焦點.已知拋物線的焦點為F,一條平行于y軸的光線從點射出,經過拋物線上的點A反射后,再經拋物線上的另一點B射出,則經點B反射后的反射光線必過點()A. B.C. D.4.函數在點處的切線方程的斜率是()A. B.C. D.5.已知等差數列的公差,記該數列的前項和為,則的最大值為()A.66 B.72C.132 D.1986.拋物線準線方程為()A. B.C. D.7.雙曲線的漸近線的斜率是()A.1 B.C. D.8.設,隨機變量X的分布列如下表所示,隨機變量Y滿足,則當a在上增大時,關于的表述下列正確的是()X013PabA增大 B.減小C.先增大后減小 D.先減小后增大9.經過點,且被圓所截得的弦最短時的直線的方程為()A. B.C. D.10.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓11.有7名同學參加百米競賽,預賽成績各不相同,取前3名參加決賽,小明同學已經知道了自己的成績,為了判斷自己是否能進入決賽,他還需要知道7名同學成績的()A.平均數 B.眾數C.中位數 D.方差12.某班新學期開學統計新冠疫苗接種情況,已知該班有學生45人,其中未完成疫苗接種的有5人,則該班同學的疫苗接種完成率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點在球的球面上,,是邊長為正三角形,分別是的中點,,則球的體積為_________________14.設正方形的邊長是,在該正方形區域內隨機取一個點,則此點到點的距離大于的概率是_____15.甲、乙兩隊進行籃球決賽,采取七場四勝制(當一隊贏得四場勝利時,該隊獲勝,決賽結束).根據前期比賽成績,甲隊的主客場安排依次為“主主客客主客主”.設甲隊主場取勝的概率為0.6,客場取勝的概率為0.5,且各場比賽結果相互獨立,則甲隊以4∶1獲勝的概率是____________16.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C與橢圓有相同的焦點,且離心率為.(1)橢圓C的標準方程;(2)若橢圓C的兩個焦點,P是橢圓上的點,且,求的面積.18.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標原點,若,求直線l的方程.19.(12分)已知數列和滿足,(1)若,求的通項公式;(2)若,,證明為等差數列,并求和的通項公式20.(12分)如圖,在直三棱柱中,,,,點是的中點.(1)求證:;(2)求證:平面.21.(12分)等差數列前n項和為,且(1)求通項公式;(2)記,求數列的前n項和22.(10分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(1)求證:平面;(2)求平面與平面CEB夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先計算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內切.故選:A.2、B【解析】根據棱柱、棱臺、球、正棱錐結構特征依次判斷選項即可.【詳解】棱柱的側面都是平行四邊形,A不正確;棱臺是由對應的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應該為正棱錐的側棱長都相等,所以D不正確.故選:B.3、D【解析】求出、坐標可得直線的方程,與拋物線方程聯立求出,根據選項可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯立解得,所以,因為反射光線平行于y軸,根據選項可得D正確,故選:D4、D【解析】求解導函數,再由導數的幾何意義得切線的斜率.【詳解】求導得,由導數的幾何意義得,所以函數在處切線的斜率為.故選:D5、A【解析】根據等差數列的公差,求得其通項公式求解.【詳解】因為等差數列的公差,所以,則,所以,由,得,所以或12時,該數列的前項和取得最大值,最大值為,故選:A6、D【解析】由拋物線的準線方程即可求解【詳解】由拋物線方程得:.所以,拋物線的準線方程為故選D【點睛】本題主要考查了拋物線的準線方程,屬于基礎題7、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B8、A【解析】先求得參數b,再去依次去求、、,即可判斷出的單調性.【詳解】由得則,由得a在上增大時,增大.故選:A9、C【解析】當是弦中點,她能時,弦長最短.由此可得直線斜率,得直線方程【詳解】根據題意,圓心為,當與直線垂直時,點被圓所截得的弦最短,此時,則直線的斜率,則直線的方程為,變形可得,故選:C.【點睛】本題考查直線與圓相交弦長問題,掌握垂徑定理是求解圓弦長問題的關鍵10、C【解析】根據兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:11、C【解析】根據中位數的性質,結合題設按成績排序7選3,即可知還需明確的成績數據信息.【詳解】由題設,7名同學參加百米競賽,要取前3名參加決賽,則成績從高到低排列,確定7名同學成績的中位數,即第3名的成績便可判斷自己是否能進入決賽.故選:C.12、D【解析】利用古典概型的概率求解.【詳解】該班同學的疫苗接種完成率為故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知設出,,,分別在中和在中運用余弦定理表示,得到關于x與y的關系式,再在中運用勾股定理得到關于x與y的又一關系式,聯立可解得x,y,從而分析出正三棱錐是,,兩兩垂直的正三棱錐,所以三棱錐的外接球就是以為棱的正方體的外接球,再通過正方體的外接球的直徑等于正方體的體對角線的長求出球的半徑,再求出球的體積.【詳解】在中,設,,,,,因為點,點分別是,的中點,所以,,在中,,在中,,整理得,因為是邊長為的正三角形,所以,又因為,所以,由,解得,所以又因為是邊長為的正三角形,所以,所以,所以,,兩兩垂直,則球為以為棱的正方體的外接球,則外接球直徑為,所以球的體積為,故答案為.【點睛】本題主要考查空間幾何體的外接球的體積,破解關鍵在于熟悉正三棱錐的結構特征,運用解三角形的正弦定理和余弦定理得出三棱錐的棱的關系,繼而分析出正三棱錐的外接球是以正三棱錐中互相垂直的三條棱為棱的正方體的外接球,利用正方體的外接球的直徑等于正方體的體對角線的長求解更方便快捷,屬于中檔題14、【解析】先求出正方形的面積,然后求出動點到點的距離所表示的平面區域的面積,最后根據幾何概型計算公式求出概率.【詳解】正方形的面積為,如下圖所示:陰影部分的面積為:,在正方形內,陰影外面部分的面積為,則在該正方形區域內隨機取一個點,則此點到點的距離大于的概率是.【點睛】本題考查了幾何概型的計算公式,正確求出陰影部分的面積是解題的關鍵.15、18【解析】本題應注意分情況討論,即前五場甲隊獲勝的兩種情況,應用獨立事件的概率的計算公式求解.題目有一定的難度,注重了基礎知識、基本計算能力及分類討論思想的考查【詳解】前四場中有一場客場輸,第五場贏時,甲隊以獲勝的概率是前四場中有一場主場輸,第五場贏時,甲隊以獲勝的概率是綜上所述,甲隊以獲勝的概率是【點睛】由于本題題干較長,所以,易錯點之一就是能否靜心讀題,正確理解題意;易錯點之二是思維的全面性是否具備,要考慮甲隊以獲勝的兩種情況;易錯點之三是是否能夠準確計算16、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意求出即可求解;(2)由橢圓的定義和三角形面積公式求解即可【小問1詳解】因為橢圓C與橢圓有相同的焦點,所以橢圓C的焦點,,,又,所以,,所以橢圓C的標準方程為.【小問2詳解】由,,得,,而,所以,所以18、(1);(2).【解析】(1)根據已知求出即得橢圓的方程;(2)設l的方程為,,,聯立直線和橢圓的方程得到韋達定理,根據得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.19、(1)(2)證明見解析,,【解析】(1)代入可得,變形得構造等比數列求的通項公式;(2)先由已知得,先分別求出,的通項公式,然后合并可得的通項公式,進而可得的通項公式【小問1詳解】當,時,,所以,即,整理得,所以是以為首項,為公比的等比數列故,即【小問2詳解】當時,由,,得,所以因為,所以,則是以為首項,2為公差的等差數列,,;是以為首項,2為公差的等差數列,,綜上所述,所以,,故是以2為首項,1為公差的等差數列當時,,且滿足,所以20、(1)證明見解析;(2)證明見解析.【解析】(1)由直棱柱的性質可得,由勾股定理可得,由線面垂直判定定理即可得結果;(2)取的中點,連結和,通過線線平行得到面面,進而得結果.【詳解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中點,連結和,∵,且,∴四邊形為平行四邊形,∴,面,∴面,∵,且,∴四邊形平行四邊形,∴,面,∴面,∵,∴面面,∴平面.【點睛】方法點睛:線面平行常見的證明方法:(1)通過構造相似三角形(三角形中位線),得到線線平行;(2)通過構造平行四邊形得到線線平行;(3)通過線面平行得到面面平行,再得線面平行.21、(1);(2).【解析】(1)設等差數列的公差為,根據已知條件求,利用等差數列的通項公式可求得數列的通項公式.(2)求得,利用裂項相消法即可求得.【小問1詳解】設等差數列的公差為,由,解得,所以,故數列的通項公式;【小問2詳解】由(1)得:,所以,所以.22、(1)證明見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論