2024屆四川省綿陽市高二上數學期末學業水平測試模擬試題含解析_第1頁
2024屆四川省綿陽市高二上數學期末學業水平測試模擬試題含解析_第2頁
2024屆四川省綿陽市高二上數學期末學業水平測試模擬試題含解析_第3頁
2024屆四川省綿陽市高二上數學期末學業水平測試模擬試題含解析_第4頁
2024屆四川省綿陽市高二上數學期末學業水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省綿陽市高二上數學期末學業水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中國共產黨建黨100周年之際,廣安市某中學組織了“黨史知識競賽”活動,已知該校共有高中學生1000人,用分層抽樣的方法從該校高中學生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學生人數為()A.960 B.720C.640 D.3202.橢圓的焦點為、,上頂點為,若,則()A B.C. D.3.設P是雙曲線上的點,若,是雙曲線的兩個焦點,則()A.4 B.5C.8 D.104.已知一個圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側面積為()A. B.C. D.5.已知是兩條不同的直線,是兩個不同的平面,則下列結論正確的是()A.若,則 B.若,則C若,則 D.若,則6.已知圓上有三個點到直線的距離等于1,則的值為()A. B.C. D.17.設函數在定義域內可導,的圖像如圖所示,則導函數的圖象可能為()A. B.C. D.8.設是可導函數,當,則()A.2 B.C. D.9.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.10.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內D.空間兩兩相交的三條直線在同一平面內11.已知雙曲線的離心率為,則的漸近線方程為A. B.C. D.12.已知雙曲線C:(,)的一條漸近線被圓所截得的弦長為2,的C的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.在數列中,,,則___________.14.設,,,則動點P的軌跡方程為______,P到坐標原點的距離的最小值為______15.已知曲線,則以下結論正確的是______.①曲線C關于點對稱;②曲線C關于y軸對稱;③曲線C被x軸所截得的弦長為2;④曲線C上的點到原點距離都不超過2.16.已知數列滿足,,若為等差數列,則___________,若,則數列的前項和為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為各項均為正數的等比數列,且,.(1)求數列的通項公式;(2)令,求數列前n項和.18.(12分)已知函數.(1)當時,求的極值;(2)設函數,,,求證:.19.(12分)為了解某城中村居民收入情況,小明利用周末時間對該地在崗居民月收入進行了抽樣調查,并將調查數據整理得到如下頻率分布直方圖:根據直方圖估算:(1)在該地隨機調查一位在崗居民,該居民收入在區間內的概率;(2)該地區在崗居民月收入的平均數和中位數;20.(12分)設函數(1)若曲線在點處的切線方程為,求;(2)求函數的單調區間21.(12分)設為數列的前n項和,且滿足(1)求證:數列為等差數列;(2)若,且成等比數列,求數列的前項和22.(10分)甲乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結束,設甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲乙各投球一次,比賽結束的概率;(2)求甲獲勝的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由分層抽樣各層成比例計算即可【詳解】設高二年級學生人數為,則,解得故選:D2、C【解析】分析出為等邊三角形,可得出,進而可得出關于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因為橢圓的上頂點為點,焦點為、,所以,,為等邊三角形,則,即,因此,.故選:C.3、C【解析】根據雙曲線的定義可得:,結合雙曲線的方程可得答案.【詳解】由雙曲線可得根據雙曲線的定義可得:故選:C4、B【解析】設圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據體積公式計算可得,利用扇形的面積公式計算即可求得結果.【詳解】如圖,設圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側面積為.故選:B5、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C6、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因為圓上有三個點到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.7、D【解析】根據函數的單調性得到導數的正負,從而得到函數的圖象.【詳解】由函數的圖象可知,當時,單調遞增,則,所以A選項和C選項錯誤;當時,先增,再減,然后再增,則先正,再負,然后再正,所以B選項錯誤.故選:D.【點睛】本題主要考查函數的單調性和導數的關系,意在考查學生對該知識的掌握水平,屬于基礎題.一般地,函數在某個區間可導,,則在這個區間是增函數;函數在某個區間可導,,則在這個區間是減函數.8、C【解析】由導數的定義可得,即可得答案【詳解】根據題意,,故.故選:C9、C【解析】作出輔助線,找到異面直線與所成角,進而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C10、C【解析】根據確定平面的條件可對每一個選項進行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內,故這三條直線在同一平面內,C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C11、C【解析】,故,即,故漸近線方程為.【考點】本題考查雙曲線的基本性質,考查學生的化歸與轉化能力.12、C【解析】由雙曲線的方程可得漸近線的直線方程,根據直線和圓相交弦長可得圓心到直線的距離,進而可得,結合,可得離心率.【詳解】雙曲線的一條漸近線方程為,即,被圓所截得的弦長為2,所以圓心到直線的距離為,,解得,故選:C【點睛】本題考查了雙曲線的漸近線和離心率、直線和圓的相交弦、點到直線距離等基本知識,考查了運算求解能力和邏輯推理能力,轉化的數學思想,屬于一般題目.二、填空題:本題共4小題,每小題5分,共20分。13、##.【解析】由遞推關系取可求,再取求,取求.詳解】由分別取,2,3可得,,,又,∴,,,故答案為:.14、①.②.l【解析】根據雙曲線的定義得到動點的軌跡方程,從而求出到坐標原點的距離的最小值;【詳解】解:因為,所以動點P的軌跡為以A,B為焦點,實軸長為2的雙曲線的下支.因為,,所以,,,所以動點P的軌跡方程為故P到坐標原點的距離的最小值為故答案為:;;15、②④【解析】將x換成,將y換成,若方程不變則關于原點對稱;將x換成,曲線的方程不變則關于y軸對稱;令通過解方程即可求得被x軸所截得的弦長;利用基本不等式即可判斷出曲線C上y軸右側的點到原點距離是否不超過2,根據曲線C關于y軸對稱,即可判斷出曲線C上的點到原點距離是否都不超過2.【詳解】對于①,將x換成,將y換成,方程改變,則曲線C關于點不對稱,故①錯誤;對于②,將x換成,曲線的方程不變,則曲線C關于y軸對稱,故②正確;對于③,令得,,解得,即曲線C與x軸的交點為和,則曲線C被x軸所截得的弦長為,故③錯誤;對于④,當時,,可得,當且僅當時取等號,即,則,即曲線C上y軸右側的點到原點的距離都不超過2,此曲線關于y軸對稱,即曲線C上y軸左側的點到原點的距離也不超過2,故④正確;故答案為:②④.16、①.##②.【解析】利用遞推關系式,結合等差數列通項公式可求得公差,進而得到;利用遞推關系式可知數列的奇數項和偶數項分別成等差數列,采用裂項相消的方法可求得前項和.【詳解】由得:,解得:;為等差數列,設其公差為,則,解得:,;由知:數列的奇數項是以為首項,為公差的等差數列;偶數項是以為首項,為公差的等差數列;,又,,數列的前項和,.故答案為:;.【點睛】關鍵點點睛:本題考查根據數列遞推關系求解數列中的項、裂項相消法求和的問題;解題關鍵是能夠根據遞推關系式得到數列的奇數項和偶數項分別成等差數列,由此可通過裂項相消的方法求得所求數列的和.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)先通過等比數列的基本量運算求出公比,進而求出通項公式;(2)結合(1)求出,然后根據錯位相減法求得答案.【小問1詳解】設等比數列公比為q,,,,(負值舍去),所以.【小問2詳解】,,所以,解得:.18、(1),無極大值(2)證明見解析【解析】(1)求出函數的導數,判斷函數的單調性,進而確定極值點,求得答案;(2)將要證明的不等式變形為,然后構造函數,利用導數判斷其單調性,求其最值,進而證明結論.【小問1詳解】當時,,,由得,列表得:1--0+減減極小值增由上表可知,無極大值.;【小問2詳解】證明:,即證;∵,則,故只需證,即證令,,得,得,∴在上遞增,在上遞減∴,∴,∴.19、(1)(2)平均數為;中位數為.【解析】(1)直接根據概率和為1計算得到答案.(2)根據平均數和中位數的定義直接計算得到答案.【小問1詳解】該居民收入在區間內的概率為:【小問2詳解】居民月收入的平均數為:.第一組概率為,第二組概率為,第三組概率為,設居民月收入的中位數為,則,解得.20、(1)(2)答案見解析【解析】(1)求出,建立方程關系,即可求出結論;(2)對分類討論,求出的單調區間.【小問1詳解】由于切點在切線上,所以,函數通過點又,根據導數幾何意義,;【小問2詳解】由可知當時,則;當時,則;當時,的單調遞減區間為,單調遞增區間為當時,單調遞增區間為,單調遞減區間為.21、(1)證明見解析;(2)答案見解析.【解析】(1)利用給定的遞推公式,結合“當時,”變形,再利用等差中項的定義推理作答.(2)利用(1)的結論,利用等比中項的定義列式計算,再利用等差數列前n項和公式計算作答.【小問1詳解】依題意,,當時,有,兩式相減得:,同理可得,于是得,即,而當時,,所以數列為等差數列.【小問2詳解】由(1)知數列為等差數列,設其首項為,公差為d,依題意,,解得或,當時,,當時,.22、(1)(2)【解析】(1)設事件“甲在第次投籃投中”,設事

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論