




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
東北師大附中凈月實驗學校2024屆高二上數學期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統民間藝術之一.如圖是一個窗花的圖案,以正六邊形各頂點為圓心、邊長為半徑作圓,陰影部分為其公共部分.現從該正六邊形中任取一點,則此點取自于陰影部分的概率為()A. B.C. D.2.我國古代的數學名著《九章算術》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數是前一天的2倍,5天共織布5尺,請問第二天織布的尺數是()A. B.C. D.3.若構成空間向量的一組基底,則下列向量不共面的是()A.,, B.,,C.,, D.,,4.從1,2,3,4,5中任取2個不同的數,兩數和為偶數的概率為()A. B.C. D.5.已知函數的導函數為,若的圖象如圖所示,則函數的圖象可能是()A. B.C. D.6.在等差數列中,,則等于A.2 B.18C.4 D.97.已知等比數列{an}中,,,則()A. B.1C. D.48.已知雙曲線:,直線經過點,若直線與雙曲線的右支只有一個交點,則直線的斜率的取值范圍是()A. B.C. D.9.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.10.若復數,則()A B.C. D.11.已知等比數列的前n項和為,,,則()A. B.C. D.12.已知函數,,當時,不等式恒成立,則實數的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______14.如圖①,用一個平面去截圓錐,得到的截口曲線是橢圓.許多人從純幾何的角度出發對這個問題進行過研究,其中比利時數學家(1794-1847)的方法非常巧妙,極具創造性.在圓錐內放兩個大小不同的球,使得它們分別與圓錐的側面,截面相切,兩個球分別與截面相切于,在截口曲線上任取一點,過作圓錐的母線,分別與兩個球相切于,由球和圓的幾何性質,可以知道,,于是.由的產生方法可知,它們之間的距離是定值,由橢圓定義可知,截口曲線是以為焦點的橢圓.如圖②,一個半徑為2的球放在桌面上,桌面上方有一個點光源,則球在桌面上的投影是橢圓.已知是橢圓的長軸,垂直于桌面且與球相切,,則橢圓的離心率為___________.15.已知函數是上的奇函數,,對,成立,則的解集為_________16.已知平面的法向量為,平面的法向量為,若,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在時有極值0.(1)求常數,的值;(2)求在區間上的最值.18.(12分)求滿足下列條件的雙曲線的標準方程(1)焦點在x軸上,實軸長為4,實半軸長是虛半軸長的2倍;(2)焦點在y軸上,漸近線方程為,焦距長為19.(12分)已知為各項均為正數的等比數列,且,.(1)求數列的通項公式;(2)令,求數列前n項和.20.(12分)已知數列的前項和為,已知,且當,時,(1)證明數列是等比數列;(2)設,求數列的前項和21.(12分)已知橢圓C:的上頂點與橢圓的左右頂點連線的斜率之積為-.(1)求橢圓C的離心率(2)點M(,)在橢圓C上,橢圓的左頂點為D,上頂點為B,點A的坐標為(1,0),過點D的直線L與橢圓在第一象限交于點P,與直線AB交于點Q設L的斜率為k,若,求k的值.22.(10分)某餐館將推出一種新品特色菜,為更精準確定最終售價,這種菜按以下單價各試吃1天,得到如下數據:(1)求銷量關于的線性回歸方程;(2)預計今后的銷售中,銷量與單價服從(1)中的線性回歸方程,已知每份特色菜的成本是15元,為了獲得最大利潤,該特色菜的單價應定為多少元?(附:,)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求得陰影部分的面積,結合幾何概型概率計算公式,計算出所求的概率.【詳解】設正六邊形的邊長為,則其面積為.陰影部分面積為,故所求概率為.故選:D2、C【解析】根據等比數列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數成等比數列,設其首項為,公比為,則,解得所以第二天織布的尺數為.故選:C3、C【解析】根據空間向量共面的條件即可解答.【詳解】對于A,由,所以,,共面;對于B,由,所以,,共面;對于D,,所以,,共面,故選:C.4、B【解析】利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從中任取個不同的數的方法有,共種,其中和為偶數的有共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型概率計算,屬于基礎題.5、D【解析】根據導函數大于,原函數單調遞增;導函數小于,原函數單調遞減;即可得出正確答案.【詳解】由導函數得圖象可得:時,,所以單調遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.6、D【解析】利用等差數列性質得到,,計算得到答案.詳解】等差數列中,故選D【點睛】本題考查了等差數列的計算,利用性質可以簡化運算,是解題的關鍵.7、D【解析】設公比為,然后由已知條件結合等比數列的通項公式列方程求出,從而可求出,【詳解】設公比為,因為等比數列{an}中,,,所以,所以,解得,所以,得故選:D8、D【解析】以雙曲線的兩條漸近線作為邊界條件,即可保證直線與雙曲線的右支只有一個交點.【詳解】雙曲線:的兩條漸近線為和兩漸近線的傾斜角分別為和由經過點的直線與雙曲線的右支只有一個交點,可知直線的傾斜角取值范圍為,故直線的斜率的取值范圍是故選:D9、B【解析】求出,進而求出,之間的關系,即可求解結論【詳解】解:由題意,直線方程為:,其中,因此,設,,,,解得,得,,弦的長恰等于實軸的長,,,故選:B10、A【解析】根據復數的乘法運算即可求解.【詳解】由,故選:A11、A【解析】由,可得等比數列公比q=2,利用等比數列求和公式和通項公式即可求.【詳解】設等比數列的公比為q,則,.故選:A.12、C【解析】由題意得出,構造函數,可知函數在區間上單調遞增,可得出對任意的恒成立,利用參變量分離法可得出,利用導數求得函數在區間上的最大值,由此可求得實數的取值范圍.【詳解】函數的定義域為,當時,恒成立,即,構造函數,則,所以,函數在區間上為增函數,則對任意的恒成立,,令,其中,則.,所以函數在上單調遞減;又,所以.因此,實數的取值范圍是.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:14、##0.5【解析】利用球與圓錐相切,得出截面,在平面圖形中求解,以及圓錐曲線的來源來理解切點為橢圓的一個焦點,求出,得出離心率.【詳解】設球切于,切于E,,球半徑為2,所以,,∴,又中,,,故橢圓長軸長為,,根據橢圓在圓錐中截面與二球相切的切點為橢圓的焦點知:球O與相切的切點為橢圓的一個焦點,且,,橢圓的離心率為.故答案:.15、【解析】根據題意可以設,求其導數可知在上的單調性,由是上的奇函數,可知的奇偶性,進而可知在上的單調性,由可知的零點,最后分類討論即可.【詳解】設,則對,,則在上為單調遞增函數,∵函數是上的奇函數,∴,∴,∴偶函數,∴在上為單調遞減函數,又∵,∴,由已知得,所以當時,;當時,;當時,;當時,;若,則;若,則或,解得或或;則的解集為.故答案為:.16、2【解析】由,可兩平面的法向量也平行,從而可求出,進而可求得答案【詳解】因為平面的法向量為,平面的法向量為,,所以∥,所以存實數使,所以,所以,解得,所以,故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)最小值為0,最大值為4.【解析】(1)對求導,根據在時有極值0,得到,再求出,的值;(2)由(1)知,,然后判斷的單調性,再求出的值域【詳解】解:(1),由題知:聯立(1)、(2)有(舍)或.當時在定義域上單調遞增,故舍去;所以,,經檢驗,符合題意(2)當,時,故方程有根或由,得或由得,函數的單調增區間為:,,減區間為:.函數在取得極大值,在取極小值;經計算,,,,所以最小值為0,最大值為4.18、(1)(2)【解析】(1)(2)直接由條件解出即可得到雙曲線方程.【小問1詳解】由題意有,解得:,則雙曲線的標準方程為:【小問2詳解】由題意有,解得:,則雙曲線的標準方程為:19、(1);(2).【解析】(1)先通過等比數列的基本量運算求出公比,進而求出通項公式;(2)結合(1)求出,然后根據錯位相減法求得答案.【小問1詳解】設等比數列公比為q,,,,(負值舍去),所以.【小問2詳解】,,所以,解得:.20、(1)證明見解析;(2).【解析】(1)消去,只保留數列的遞推關系,根據題干提示來證明,注意證明首項不是零;(2)利用裂項求和來解決.【小問1詳解】證明:由題意,當時,即,,整理,得,,,,數列是以2為首項,2為公比的等比數列【小問2詳解】解:由(1)知,,則,,,,,各項相加,可得,當n=1成立,故21、(1)(2)1【解析】(1)根據橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,由求解;(2)根據點M(,)在橢圓C上,頂點,再由,求得橢圓方程,由,結合,得到,設直線方程為,與橢圓方程聯立,求得點P的坐標,再由,求得Q的坐標,代入求解.【小問1詳解】解:設橢圓C:的上頂點為,左頂點為,右頂點為,因為橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,所以,即,又所以,解得;【小問2詳解】因為點M(,)在橢圓C上,所以,又,解得,所以橢圓方程為,,則,因為,所以,又,所以,則,設,則,當時,則,不合題意;當時,設直線方程為,與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《高中校園文化發展》課件
- 《會計實務手工操作》課件
- 《招聘的策略》課件
- 鐵路調車工作實訓無線調車燈顯設備課件
- 鐵路工程安全技術石家莊鐵路44課件
- 鐵路貨物運雜費保價費率相關規定課件
- 《GB 15562.1-1995環境保護圖形標志 排放口(源)》(2025版)深度解析
- 中世紀文化課件
- 股東資金借用合同范例
- 東陽木雕文化課件
- 二年級科學下冊教案 -《3 可伸縮的橡皮筋》 冀人版
- 分析化學第三章酸堿滴定法課件
- 結核病防治知識培訓試題帶答案
- 心血管疾病醫療質量控制指標(2020年版)
- 培訓(微機保護基礎)課件
- 《生物冶金》課程教學大綱
- DB22-T 5118-2022 建筑工程資料管理標準
- 工程地質測繪ppt版(共61頁)
- 水文地質與工程地質勘察工程地質測繪PPT
- 機組黑啟動方案
- 平衡計分卡及戰略地圖
評論
0/150
提交評論