




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省南京市江寧區高級中學數學高二上期末學業質量監測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,過拋物線的焦點的直線交拋物線于點,,交其準線于點,準線與對稱軸交于點,若,且,則此拋物線的方程為()A. B.C. D.2.用1,2,3,4這4個數字可寫出()個沒有重復數字的三位數A.24 B.12C.81 D.643.點到直線的距離為A.1 B.2C.3 D.44.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或5.若,則=()A.244 B.1C. D.6.已知為兩條不同的直線,為兩個不同的平面,則下列結論正確的是()A.若,則B.若,則C.若,則D.若,則7.設函數,,,則()A. B.C. D.8.若1,m,9三個數成等比數列,則圓錐曲線的離心率是()A.或 B.或2C.或 D.或29.已知,,,,則()A. B.C. D.10.為了解一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:㎝).根據所得數據畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.800011.已知集合,集合或,是實數集,則()A. B.C. D.12.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若在上是增函數,則實數的取值范圍是________14.寫出一個數列的通項公式____________,使它同時滿足下列條件:①,②,其中是數列的前項和.(寫出滿足條件的一個答案即可)15.已知點P為橢圓上的任意一點,點,分別為該橢圓的左、右焦點,則的最大值為______________.16.已知圓錐的母線長為cm,其側面展開圖是一個半圓,則底面圓的半徑為____cm.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心為,一條直徑的兩個端點分別在x軸和y軸上(1)求圓C的方程;(2)直線l:與圓C相交于M,N兩點,P(異于點M,N)為圓C上一點,求△PMN面積的最大值18.(12分)已知橢圓過點,離心率為.(1)求橢圓的方程;(2)過點作直線,與直線和橢圓分別交于兩點,(與不重合).判斷以為直徑的圓是否過定點,如果過定點,求出定點坐標;如果不過定點,說明理由.19.(12分)已知雙曲線的右焦點與拋物線的焦點相同,且過點.(1)求雙曲線漸近線方程;(2)求拋物線的標準方程.20.(12分)如圖,在直三棱柱中,,,,,分別為,的中點(1)求證:;(2)求直線與平面所成角的正弦值21.(12分)如圖,在四面體ABCD中,,平面ABC,點M為棱AB的中點,,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值22.(10分)已知拋物線的焦點到準線的距離為,過點的直線與拋物線只有一個公共點.(1)求拋物線的方程;(2)求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據拋物線定義,結合三角形相似以及已知條件,求得,則問題得解.【詳解】根據題意,過作垂直于準線,垂足為,過作垂直于準線,垂足為,如下所示:因為,又//,,則,故可得,又△△,則,即,解得,故拋物線方程為:.故選:.2、A【解析】由題意,從4個數中選出3個數出來全排列即可.【詳解】由題意,從4個數中選出3個數出來全排列,共可寫出個三位數.故選:A3、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.4、D【解析】根據曲線方程的特征,發現曲線表示在軸上方的圖象,畫出圖形,根據圖形上直線的三個特殊位置,當已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應的的值;當已知直線位于直線及直線的位置時,分別求出對應的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當直線在直線位置時,直線與曲線剛好有兩個交點,此時,當直線在直線位置時,直線與曲線只有一個公共點,此時,則當時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D5、D【解析】分別令代入已知關系式,再兩式求和即可求解.【詳解】根據,令時,整理得:令x=2時,整理得:由①+②得,,所以.故選:D.6、D【解析】根據空間里面直線與平面、平面與平面位置關系的相關定理逐項判斷即可.【詳解】A,若,則或異面,故該選項錯誤;B,若,則或相交,故該選項錯誤;C,若,則α,β不一定垂直,故該選項錯誤;D,若,則利用面面垂直的性質可得,故該選項正確.故選:D.7、A【解析】根據導數得出在的單調性,進而由單調性得出大小關系.【詳解】因為,所以在上單調遞增.因為,所以,而,所以.因為,且,所以.即.故選:A8、D【解析】運用等比數列的性質可得,再討論,,求出曲線的,,由離心率公式計算即可得到【詳解】三個數1,,9成等比數列,則,解得,,當時,曲線為橢圓,則;當時,曲線為為雙曲線,則離心率故選:9、D【解析】根據對數函數的性質和冪函數的單調性可得正確的選項.【詳解】因為,故,故,又,在上的增函數,故,故,故選:D.10、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長小于110㎝的概率,進而可求出結果.【詳解】由頻率分布直方圖可得,樣本中底部周長小于110㎝的概率為,因此在這片樹木中,底部周長小于110㎝的株樹大約是.故選:C.【點睛】本題主要考查頻率分布直方圖的應用,屬于基礎題型.11、A【解析】先化簡集合,再由集合的交集、補集運算求解即可【詳解】,或,故故選:A12、B【解析】根據充分條件、必要條件、充要條件的定義依次判斷.【詳解】當時,,非充分,故A錯.當不能推出,所以非充分,,所以是必要條件,故B正確.當在中,,反之,故為充要條件,故C錯;當時,,,,充分條件,因為,當時成立,非必要條件,故D錯.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據函數在上是增函數,分段函數在整個定義域內單調,則在每個函數內單調,注意銜接點的函數值.【詳解】解:因為函數在上是增函數,所以在區間上是增函數且在區間上也是增函數,對于函數在上是增函數,則;①對于函數,(1)當時,,外函數為定義域內的減函數,內函數在上是增函數,根據復合函數“同增異減”可得時函數在區間上是減函數,不符合題意,故舍去,(2)當時,外函數為定義域內的增函數,要使函數在區間上是增函數,則內函數在上也是增函數,且對數函數真數大于0,即在上也要恒成立,所以,又,所以,②又在上是增函數則在銜接點處函數值應滿足:,化簡得,③由①②③得,,所以實數的取值范圍是.故答案為:.【點睛】方法點睛:利用單調性求參數方法如下:(1)依據函數的圖象或單調性定義,確定函數的單調區間,與已知單調區間比較;(2)需注意若函數在區間上是單調的,則該函數在此區間的任意子集上也是單調的;(3)分段函數的單調性,除注意各段的單調性外,還要注意銜接點的取值14、(答案合理即可)【解析】當時滿足,利用作差比較法即可證明.【詳解】解:當時滿足條件①②,證明如下:因為,所以;當時,;當時,;綜上,.故答案為:(答案合理即可).15、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【詳解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大時,由橢圓的性質知當P為橢圓上頂點時最大,此時,,所以,所以的最大值是1,,所以,故答案為:.【點睛】本題考查橢圓焦點三角形的問題,考查正弦定理的應用.16、【解析】根據題意可知圓錐側面展開圖的半圓的半徑為cm,再根據底面圓的周長等于側面的弧長,即可求出結果.【詳解】設底面圓的半徑為,由于側面展開圖是一個半圓,又圓錐的母線長為cm,所以該半圓的半徑為cm,所以,所以(cm).故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設直徑兩端點分別為,,由中點公式求參數a、b,進而求半徑,即可得圓C的方程;(2)利用弦心距、半徑、弦長的幾何關系求,再由圓心到直線l的距離求P到直線l的距離的最大值,即可得△PMN面積的最大值【小問1詳解】設直徑兩端點分別為,,則,,所以,,則圓C半徑,所以C的方程為【小問2詳解】圓心C到直線l的距離,則,點P到直線l的距離的最大值為,所以,△PMN面積的最大值為18、(1)(2)過定點,定點為【解析】(1)根據離心率及頂點坐標求出即可得橢圓方程;(2)當直線斜率存在時,設直線的方程為(),求出的坐標,設是以為直徑的圓上的點,利用向量垂直可得恒成立,可得定點,斜率不存在時驗證即可.【小問1詳解】由題意得,,,又因為,所以.所以橢圓C的方程為.【小問2詳解】以為直徑的圓過定點.理由如下:當直線斜率存在時,設直線的方程為().令,得,所以.由得,則或,所以.設是以為直徑的圓上的任意一點,則,.由題意,,則以為直徑的圓的方程為.即恒成立即解得故以為直徑的圓恒過定點.當直線斜率不存在時,以為直徑的圓也過點.綜上,以為直徑的圓恒過定點.19、(1)(2)【解析】(1)將已知點代入雙曲線方程,然后可得;(2)由雙曲線右焦點與拋物線的焦點相同可解.【小問1詳解】因為雙曲線過點,所以所以,得又因為,所以所以雙曲線的漸近線方程【小問2詳解】由(1)得所以所以雙曲線的右焦點是所以拋物線的焦點是所以,所以所以拋物線的標準方程20、(1)證明見解析(2)【解析】(1)利用空間向量求出空間直線的向量積,即可證明兩直線垂直.(2)利用空間向量求直線與平面所成空間角的正弦就是就出平面的法向量與直線的方向向量之間夾角的余弦即可.【小問1詳解】如圖,以為坐標原點,,,所在直線為,,軸,建立空間直角坐標系,則,,,,,因為,,所以,即;【小問2詳解】設平面的法向量為因為,由,得,令,則所以平面的一個法向量為,又所以故直線與平面所成角的正弦值為21、(1)證明見解析(2)【解析】(1)根據題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點,分別以,,方向為x軸,y軸,z軸的正方向的空間直角坐標系,分別求得平面BCD的一個法向量和平面DCM的一個法向量,然后由求解【小問1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問2詳解】如圖,以A為原點,分別以,,的方向為x軸,y軸,z軸的正方向的空間直角坐標系,則,,,,,依題意,可得,設為平面BCD的一個法向量,則,不妨令,可得設為平面DCM的一個法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025探索服務合同的試用期
- 2024年超臨界CO2萃取裝置膜生物反應器及其他項目資金申請報告代可行性研究報告
- 2025潤滑油銷售合同協議
- 2025全日制勞動合同
- 2025年國稅局合同制人員醫療險問題
- 2025勞動合同(教師)
- 2025宜昌市存量房買賣合同
- 2025《廣州市合同范本》
- 2025深圳市租賃合同協議
- 2025國內認證委托合同
- (三診)綿陽市高中2022級高三第三次診斷性考試 歷史試卷A卷(含答案)
- 麻醉專業考試試題及答案
- 2024華能四川能源開發有限公司下屬單位招聘筆試參考題庫附帶答案詳解
- 湖南省長沙市長郡教育集團2024-2025學年七年級下學期期中生物試題
- 山東省高中名校2025屆高三4月校際聯合檢測大聯考生物試題及答案
- 2025年武漢數學四調試題及答案
- 【MOOC】數學建模精講-西南交通大學 中國大學慕課MOOC答案
- 職業病防護設施與個體防護用品的使用和維護
- 2024年全國高中數學聯賽北京賽區預賽一試試題(解析版)
- 綠化養護服務投標方案(技術標)
- 中國紡織文化智慧樹知到期末考試答案2024年
評論
0/150
提交評論