2024屆湖師范大學附屬中學數學高二上期末學業質量監測模擬試題含解析_第1頁
2024屆湖師范大學附屬中學數學高二上期末學業質量監測模擬試題含解析_第2頁
2024屆湖師范大學附屬中學數學高二上期末學業質量監測模擬試題含解析_第3頁
2024屆湖師范大學附屬中學數學高二上期末學業質量監測模擬試題含解析_第4頁
2024屆湖師范大學附屬中學數學高二上期末學業質量監測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖師范大學附屬中學數學高二上期末學業質量監測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平形六面體中,其中,,,,,則的長為()A. B.C. D.2.已知函數的導數為,且,則()A. B.C.1 D.3.已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個焦點為頂點的四邊形的面積為16,則橢圓的方程為A. B.C. D.4.設函數,當自變量t由2變到2.5時,函數的平均變化率是()A.5.25 B.10.5C.5.5 D.115.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.6.設點P是函數圖象上任意一點,點Q的坐標,當取得最小值時圓C:上恰有2個點到直線的距離為1,則實數r的取值范圍為()A. B.C. D.7.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.8.設、是向量,命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則9.如下圖,面與面所成二面角的大小為,且A,B為其棱上兩點.直線AC,BD分別在這個二面角的兩個半平面中,且都垂直于AB,已知,,,則()A. B.C. D.10.函數直線與的圖象相交于A、B兩點,則的最小值為()A.3 B.C. D.11.某地為應對極端天氣搶險救災,需調用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時之需,若x和y滿足約束條件則最多需調用卡車的數量為()A.7 B.9C.13 D.1412.如圖,四棱錐中,底面是邊長為的正方形,平面,為底面內的一動點,若,則動點的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若關于的不等式恒成立,則實數的取值范圍是__________14.已知點是拋物線的準線與x軸的交點,F為拋物線的焦點,P是拋物線上的動點,則最小值為_____15.設等差數列的前項和為,若,,則______16.經過點,的直線的傾斜角為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)討論的單調性;(2)當有最大值,且最大值大于時,求取值范圍.18.(12分)設命題p:,命題q:關于x的方程無實根.(1)若p為真命題,求實數m的取值范圍;(2)若為假命題,為真命題,求實數m的取值范圍19.(12分)在①直線l:是拋物線C的準線;②F是橢圓的一個焦點;③,對于C上的點A,的最小值為;在以上三個條件中任選一個,填到下面問題中的橫線處,并完成解答.已知拋物線C:的焦點為F,滿足_____(1)求拋物線C的標準方程;(2)是拋物線C上在第一象限內的一點,直線:與C交于M,N兩點,若的面積為,求m的值20.(12分)已知圓的圓心在直線上,且圓經過點與點.(1)求圓的方程;(2)過點作圓的切線,求切線所在的直線的方程.21.(12分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大小;(2)若,且的面積為,求的周長.22.(10分)已知圓C經過,,三點,并且與y軸交于P,Q兩點,求線段PQ的長度.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據空間向量基本定理、加法的運算法則,結合空間向量數量積的運算性質進行求解即可.【詳解】因為是平行六面體,所以,所以有:,因此有:,因為,,,,,所以,所以,故選:B2、B【解析】直接求導,令求出,再將帶入原函數即可求解.【詳解】由得,當時,,解得,所以,.故選:B3、D【解析】由題意,雙曲線的漸近線方程為,∵以這四個交點為頂點的四邊形為正方形,其面積為16,故邊長為4,∴(2,2)在橢圓C:上,∴,∵,∴,∴,∴∴橢圓方程為:.故選D.考點:橢圓的標準方程及幾何性質;雙曲線的幾何性質.4、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.5、C【解析】設,代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設,則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法6、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數形結合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數形結合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C7、B【解析】由題設可得,又,易知,,將問題轉化為平面點線距離關系:向量的終點為圓心,1為半徑的圓上的點到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉化為求在圓上的哪一點時,使最小,又,∴當且僅當三點共線且時,最小為.故選:B.【點睛】關鍵點點睛:由已知確定,,構成等邊三角形,即可將問題轉化為圓上動點到射線的距離最短問題.8、C【解析】利用原命題與逆否命題之間的關系可得結論.【詳解】由原命題與逆否命題之間的關系可知,命題“若,則”的逆否命題是“若,則”.故選:C.9、B【解析】根據題意,作,且,則四邊形ABDE為平行四邊形,進一步判斷出該四邊形為矩形,然后確定出為二面角的平面角,進而通過余弦定理和勾股定理求得答案.【詳解】如圖,作,且,則四邊形ABDE為平行四邊形,所以.因為,所以,又,所以是該二面角的一個平面角,即,由余弦定理.因為,,所以,易得四邊形ABDE為矩形,則,而,所以平面ACE,則,于是.故選:B.10、C【解析】先求出AB坐標,表示出,規定函數,其中,利用導數求最小值.【詳解】聯立解得可得點.聯立解得可得點.由題意可得解得,令,其中,∴.∴函數單調遞減;.因此,的最小值為故選:C【點睛】距離的最值求解:(1)幾何法求最值;(2)代數法:表示出距離,利用函數求最值.11、B【解析】畫出約束條件的可行域,利用目標函數的幾何意義即可求解【詳解】設調用卡車的數量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當目標函數經過時,縱截距最大,最大.故選:B12、A【解析】根據題意,得到兩兩垂直,以點為坐標原點,分別以為軸,建立空間直角坐標系,設,由題意,得到,,再由得到,求出點的軌跡,即可得出結果.【詳解】由題意,兩兩垂直,以點為坐標原點,分別以為軸,建立如圖所示的空間直角坐標系,因為底面是邊長為的正方形,則,,因為為底面內的一動點,所以可設,因此,,因為平面,所以,因此,所以由得,即,整理得:,表示圓,因此,動點的軌跡在圓上.故選:A.【點睛】本題主要考查立體幾何中的軌跡問題,靈活運用空間向量的方法求解即可,屬于常考題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:應用換元法,令,,不等式恒成立,轉化為在恒成立,確定關系式,即可求得答案.詳解:函數對稱軸,最小值令,則恒成立,即在上.,在單調遞增,,解得,即實數的取值范圍是故答案為.點睛:本題考查了函數的單調性、最值問題、不等式恒成立問題以及二次函數的圖象和性質等知識,考查了復合函數問題求解的換元法14、【解析】利用已知條件求出p,設出P的坐標,然后求解的表達式,利用基本不等式即可得出結論【詳解】解:由題意可知:,設點,P到直線的距離為d,則,所以,當且僅當x時,的最小值為,此時,故答案為:【點睛】本題考查拋物線的簡單性質的應用,基本不等式的應用,屬于中檔題15、77【解析】依題意利用等差中項求得,進而求得.【詳解】依題意可得,則,故故答案為:77.16、【解析】根據兩點間斜率公式得到斜率,再根據斜率確定傾斜角大小即可.【詳解】根據兩點間斜率公式得:,所以直線的傾斜角為:.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)時,在是單調遞增;時,在單調遞增,在單調遞減.(2).【解析】(Ⅰ)由,可分,兩種情況來討論;(II)由(I)知當時在無最大值,當時最大值為因此.令,則在是增函數,當時,,當時,因此a的取值范圍是.試題解析:(Ⅰ)的定義域為,,若,則,在是單調遞增;若,則當時,當時,所以在單調遞增,在單調遞減.(Ⅱ)由(Ⅰ)知當時在無最大值,當時在取得最大值,最大值為因此.令,則在是增函數,,于是,當時,,當時,因此a取值范圍是.考點:本題主要考查導數在研究函數性質方面的應用及分類討論思想.18、(1)(2)【解析】(1)解一元二次不等式,即可求得當為真命題時的取值范圍;(2)先求得命題為真命題時的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當為真命題時,解不等式可得;(2)當為真命題時,由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點睛】本題考查了根據命題真假求參數的取值范圍,由復合命題真假判斷命題真假,并求參數的取值范圍,屬于基礎題.19、(1)(2)或.【解析】(1)選條件①,由準線方程得參數,從而得拋物線方程;選條件②,由橢圓的焦點坐標與拋物線焦點坐標相同求得得拋物線方程;選條件③,由F,A,B三點共線時,,再由兩點間距離公式求得得拋物線方程;(2)求出點坐標,由點到直線距離公式求得到直線的距離,設,,直線方程代入拋物線方程,判別式大于0保證相交,由韋達定理得,由弦長公式得弦長,再計算出三角形的面積后可解得【小問1詳解】選條件①:由準線方程為知,所以拋物線C的方程為選條件②:因為拋物線的焦點坐標為所以由已知得橢圓的一個焦點為.所以,又,所以,所以拋物線C的方程為選條件③:由題意可知得,當F,A,B三點共線時,,由兩點間距離公式,解得,所以拋物線C的方程為.【小問2詳解】把代入方程,可得,設,,聯立,消去y可得,由,解得,又知,,所以,由到直線的距離為,所以,即,解得或經檢驗均滿足,所以m的值為或.20、(1);(2)或.【解析】(1)求出線段中點,進而得到線段的垂直平分線為,與聯立得交點,∴.則圓的方程可求(2)當切線斜率不存在時,可知切線方程為.當切線斜率存在時,設切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.試題解析:(1)線段的中點為,∵,∴線段的垂直平分線為,與聯立得交點,∴.∴圓的方程為.(2)當切線斜率不存在時,切線方程為.當切線斜率存在時,設切線方程為,即,則到此直線的距離為,解得,∴切線方程為.故滿足條件的切線方程為或.【點睛】本題考查圓的方程的求法,圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論