2024屆廣東省汕頭市達濠華橋中學、東廈中學高二上數學期末質量檢測模擬試題含解析_第1頁
2024屆廣東省汕頭市達濠華橋中學、東廈中學高二上數學期末質量檢測模擬試題含解析_第2頁
2024屆廣東省汕頭市達濠華橋中學、東廈中學高二上數學期末質量檢測模擬試題含解析_第3頁
2024屆廣東省汕頭市達濠華橋中學、東廈中學高二上數學期末質量檢測模擬試題含解析_第4頁
2024屆廣東省汕頭市達濠華橋中學、東廈中學高二上數學期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省汕頭市達濠華橋中學、東廈中學高二上數學期末質量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在公比為為q等比數列中,是數列的前n項和,若,則下列說法正確的是()A. B.數列是等比數列C. D.2.過雙曲線(,)的左焦點作圓:的兩條切線,切點分別為,,雙曲線的左頂點為,若,則雙曲線的漸近線方程為()A. B.C. D.3.把紅、黑、藍、白4張紙牌隨機地分發給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”的關系是()A.既不互斥也不對立 B.互斥又對立C.互斥但不對立 D.對立4.已知四面體,所有棱長均為2,點E,F分別為棱AB,CD的中點,則()A.1 B.2C.-1 D.-25.已知命題:,使;命題:,都有,則下列結論正確的是()A.命題“”是真命題: B.命題“”是假命題:C.命題“”是假命題: D.命題“”是假命題6.已知數列的前n項和為,,,則()A. B.C. D.7.過拋物線焦點的直線與拋物線交于兩點,,拋物線的準線與軸交于點,則的面積為()A. B.C. D.8.已知,命題“若,則,全為0”的否命題是()A.若,則,全不為0. B.若,不全為0,則.C.若,則,不全為0. D.若,則,全不為0.9.某班級從5名同學中挑出2名同學進行大掃除,若小王和小張在這5名同學之中,則小王和小張都沒有被挑出的概率為()A. B.C. D.10.設等差數列的前項和為,已知,,則的公差為()A.2 B.3C.4 D.511.設,則有()A. B.C. D.12.拋物線的焦點為F,準線為l,點P是準線l上的動點,若點A在拋物線C上,且,則(O為坐標原點)的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數列的前項和為,則的通項公式為________.14.已知長軸長為,短軸長為的橢圓的面積為.現用隨機模擬的方法來估計的近似值,先用計算機產生個數對,,其中,均為內的隨機數,再由計算機統計發現其中滿足條件的數對有個,由此可估計的近似值為______________15.已知離心率為,且對稱軸都在坐標軸上的雙曲線C過點,過雙曲線C上任意一點P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點O為坐標原點,則四邊形OAPB的面積為______16.如圖,將一個正方體沿相鄰三個面的對角線截出一個棱錐,若該棱錐的體積為,則該正方體的體對角線長為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列的前項和為,,且.(1)求數列的通項公式;(2)設數列的前項和為,證明:.18.(12分)某城市地鐵公司為鼓勵人們綠色出行,決定按照乘客經過地鐵站的數量實施分段優惠政策,不超過12站的地鐵票價如下表:乘坐站數票價(元)246現有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過12站,且他們各自在每個站下地鐵的可能性是相同的.(1)若甲、乙兩人共付費6元,則甲、乙下地鐵的方案共有多少種?(2)若甲、乙兩人共付費8元,則甲比乙先下地鐵的方案共有多少種?19.(12分)如圖,已知等腰梯形,,為等腰直角三角形,,把沿折起(1)當時,求證:;(2)當平面平面時,求平面與平面所成二面角的平面角的正弦值20.(12分)已知等比數列{an}中,a1=1,且2a2是a3和4a1的等差中項.數列{bn}滿足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求數列{an}的通項公式;(2)求數列{an+bn}前n項和Tn.21.(12分)已知橢圓的左頂點、上頂點和右焦點分別為,且的面積為,橢圓上的動點到的最小距離是(1)求橢圓的方程;(2)過橢圓的左頂點作兩條互相垂直的直線交橢圓于不同的兩點(異于點).①證明:動直線恒過軸上一定點;②設線段中點為,坐標原點為,求的面積的最大值.22.(10分)橢圓的左右焦點分別為,,焦距為,為原點.橢圓上任意一點到,距離之和為.(1)求橢圓的標準方程;(2)過點的斜率為2的直線交橢圓于、兩點,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據等比數列的通項公式、前項和公式的基本量運算,即可得到答案;【詳解】,,故A錯誤;,,顯然數列不是等比數列,故B錯誤;,故C錯誤;,,故D成立;故選:D2、C【解析】根據,,可以得到,從而得到與的關系式,再由,,的關系,進而可求雙曲線的漸近線方程【詳解】解:由,,則是圓的切線,,,,所以,因為雙曲線的漸近線方程為,即為故選:C3、C【解析】根據互斥事件、對立事件的定義可得答案.【詳解】把紅、黑、藍、白4張紙牌隨機地分發給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”不能同時發生,但能同時不發生,所以它們的關系是互斥但不對立.故選:C.4、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數量積計算作答.【詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點E,F分別為棱AB,CD的中點,則,,,所以.故選:D5、B【解析】根據正弦函數的性質判斷命題為假命題,由判斷命題為真命題,從而得出答案.【詳解】因為的值域為,所以命題為假命題因為,所以命題為真命題則命題“”是假命題,命題“”是假命題,命題“”是真命題,命題“”是真命題故選:B6、D【解析】根據給定遞推公式求出即可計算作答.【詳解】因數列的前n項和為,,,則,,,所以.故選:D7、B【解析】畫出圖形,利用已知條件結合拋物線的定義求解邊長CF,BK,然后求解三角形的面積即可【詳解】如圖,設拋物線的準線為,過作于,過作于,過作于,設,則根據拋物線的定義可得,,,的面積為,故選:.8、C【解析】根據四種命題的關系求解.【詳解】因為否命題是否定原命題的條件和結論,所以命題“若,則,全為0”的否命題是:若,則,不全為0,故選:C9、B【解析】記另3名同學分別為a,b,c,應用列舉法求古典概型的概率即可.【詳解】記另3名同學分別為a,b,c,所以基本事件為,,(a,小王),(a,小張),,(b,小王),(b,小張),(c,小王),(c,小張),(小王,小張),共10種小王和小張都沒有被挑出包括的基本事件為,,,共3種,綜上,小王和小張都沒有挑出的概率為故選:B.10、B【解析】由以及等差數列的性質,可得的值,再結合即可求出公差.【詳解】解:,得,,又,兩式相減得,則.故選:B.11、A【解析】利用作差法計算與比較大小即可求解.【詳解】因為,,所以,所以,故選:A.12、D【解析】依題意得點坐標,作點關于的對稱點,則,求即為最小值【詳解】如圖所示:作點關于的對稱點,連接,設點,不妨設,由題意知,直線l方程為,則,得所以,得,所以由,當三點共線時取等號,又所以最小值為故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】討論和兩種情況,進而利用求得答案.【詳解】由題意,時,,時,,則,于是,故答案為:14、【解析】由,,根據表示的數對對應的點在橢圓的內部,且在第一象限,求出滿足條件的點的概率,再轉化為幾何概型的面積類型求解【詳解】,,表示的數對對應的點在橢圓的內部,且在第一象限,其面積為,故,得故答案為:.【點睛】本題主要考查了幾何型概率應用,解題關鍵是掌握幾何型概率求法,考查了分析能力和計算能力,屬于基礎題.15、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,可得雙曲線方程為,設,則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,又雙曲線過點,,∴,故雙曲線方程為,∴漸近線方程為,設,則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:216、.【解析】先根據棱錐的體積求出正方體的棱長,進而求出正方體的體對角線長.【詳解】如圖,連接,設正方體棱長為,則.所以,體對角線.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據等差數列的性質及題干條件,可求得,代入公式,即可求得數列的通項公式;(2)由(1)可得,利用裂項相消求和法,即可求得,即可得證.【詳解】解:(1)設數列的公差為,在中,令,得,即,故①.由得,所以②.由①②解得,.所以數列的通項公式為:.(2)由(1)可得,所以,故,所以.因為,所以.【點睛】數列求和的常見方法:(1)倒序相加法:如果一個數列的前n項中首末兩端等距離的兩項的和相等或等于同一個常數,那么求這個數列的前n項和可以用倒序相加法;(2)錯位相減法:如果一個數列的各項是由一個等差數列和一個等比數列的對應項之積構成的,那么這個數列的前n項和可以用錯位相減法來求;(3)裂項相消法:把數列的通項拆成兩項之差,在求和時,中間的一些項可相互抵消,從而求得其和;(4)分組轉化法:一個數列的通項公式是由若干個等差數列或等比數列或可求和的數列組成,則求和時可用分組轉換法分別求和再相加減;(5)并項求和法:一個數列的前n項和可以兩兩結合求解,則稱之為并項求和,形如類型,可采用兩項合并求解.18、(1)24(種)(2)21(種)【解析】(1)先根據共付費6元得一人付費2元一人付費4元,再確定人與乘坐站數,即可得結果;(2)先根據共付費8元得一人付費2元一人付費6元或兩人都付費4元,再求甲比乙先下地鐵的方案數.【小問1詳解】由已知可得:甲、乙兩人共付費6元,則甲、乙一人付費2元一人付費4元,又付費2元的乘坐站數有1,2,3三種選擇,付費4元的乘坐站數有4,5,6,7四種選,所以甲、乙下地鐵的方案共有(3×4)×2=24(種).【小問2詳解】甲、乙兩人共付費8元,則甲、乙一人付費2元一人付費6元或兩人都付費4元;當甲付費2元,乙付費6元時,甲乘坐站數有1,2,3三種選擇,乙乘坐站數有8,9,10,11,12五種選擇,此時,共有35=15(種)方案;當兩人都付費4元時,若甲在第4站下地鐵,則乙可在第5,6,7站下地鐵,有3種方案;若甲在第5站下地鐵,則乙可在第6,7站下地鐵,有2種方案;若甲在第6站下地鐵,則乙可在第7站下地鐵,有1種方案;綜上,甲比乙先下地鐵的方案共有(種).19、(1)證明見解析(2)【解析】(1)取的中點E,連,證明四邊形為平行四邊形,從而可得為等邊三角形,四邊形為菱形,從而可證,,即可得平面,再根據線面垂直的性質即可得證;(2)取的中點M,連接,以B為空間坐標原點,向量分別為x,y,z軸建立空間直角坐標系,利用向量法即可得出答案.【小問1詳解】解:取的中點E,連,∵,∴,∵,∴四邊形為平行四邊形,∵,∴,∵,∴為等邊三角形,四邊形為菱形,∴,,∴∴,∵,,,平面,,∴平面,∵平面,∴;【小問2詳解】解:取的中點M,連接,由(1)知,,∵平面平面,,∴平面,以B為空間坐標原點,向量分別為x,y,z軸建立空間直角坐標系,則,設平面的法向量為,由,,有,取,可得,設平面的法向量為,由,,有,取,有,有,故平面與平面所成二面角的正弦值為20、(1);(2).【解析】(1)根據已知條件求出等比數列的公比,然后利用等比數列通項公式求解即可;(2)根據已知求出數列的通項公式,再結合(1)中結論并利用分組求和法求解即可.【詳解】(1)設等比數列公比為q,因為,所以,因為是和的等差中項,所以,即,解得,所以.故答案為:.(2)因為,所以為等差數列,因為,,所以公差,故.所以.故答案為:.21、(1)(2)①證明見解析;②【解析】(1)根據題意得,,解方程即可;(2)①設直線:,直線:,聯立曲線分別求出點和的坐標,求直線方程判斷定點即可;②根據題意得,代入求最值即可.【小問1詳解】根據題意得,,,又,三個式子聯立解得,,,所以橢圓的方程為:【小問2詳解】①證明:設兩條直線分別為和,根據題意和得斜率存在且不等于;因為,所以設直線:,直線:;由,解得,所以,同理,.當時,,所以直線的方程為:,整理得,此時直線過定點;當時,直線的方程為:,此時直線過定點,故直線恒過定點.②根據題意得,,,,所以,當且僅當,即時等號成立,故的面積的最大值為:.【點睛】解決直線與橢圓綜合問題時,要注意:(1)注意觀察應用題設中的每一個條件

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論