




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023高二下數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列命題中真命題的個數(shù)是()①若樣本數(shù)據(jù),,…,的方差為16,則數(shù)據(jù),,…,的方差為64;②“平面向量,夾角為銳角,則”的逆命題為真命題;③命題“,”的否定是“,”;④若:,:,則是的充分不必要條件.A.1 B.2 C.3 D.42.函數(shù)的最小正周期是()A. B. C. D.3.曲線與直線圍成的平面圖形的面積為()A. B. C. D.4.?dāng)?shù)列中,,(),那么()A.1 B.-2 C.3 D.-35.給出下列三個命題:①“若,則”為假命題;②若為假命題,則均為假命題;③命題,則,其中正確的個數(shù)是()A.0 B.1 C.2 D.36.已知函數(shù)(為自然對數(shù)的底數(shù)),.若存在實數(shù),使得,且,則實數(shù)的最大值為()A. B. C. D.17.動點在圓上移動時,它與定點連線的中點的軌跡方程是()A. B.C. D.8.某超市抽取13袋袋裝食用鹽,對其質(zhì)量(單位:g)進(jìn)行統(tǒng)計,得到如圖所示的莖葉圖,若從這13袋食用鹽中隨機(jī)選取1袋,則該袋食用鹽的質(zhì)量在內(nèi)的概率為()A. B. C. D.9.已知隨機(jī)變量服從正態(tài)分布,且,則().A. B. C. D.10.將函數(shù)的圖像沿x軸向左平移個單位后,得到一個偶函數(shù)的圖像,則的一個可能取值為A. B. C.0 D.11.已知函數(shù),其中,為自然對數(shù)的底數(shù),若,是的導(dǎo)函數(shù),函數(shù)在區(qū)間內(nèi)有兩個零點,則的取值范圍是()A. B. C. D.12.已知變量,之間具有線性相關(guān)關(guān)系,其回歸方程為,若,,則的值為()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.展開式的常數(shù)項為.(用數(shù)字作答)14.已知定義在上的函數(shù)在導(dǎo)函數(shù)為,若,且當(dāng)時,,則滿足不等式的實數(shù)的取值范圍是__________.15.若向量,,且,則實數(shù)__________.16.若函數(shù)是偶函數(shù),且在上是增函數(shù),若,則滿足的實數(shù)的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的左焦點,離心率為,點為橢圓上任一點,且的最小值為.(1)求橢圓的方程;(2)若直線過橢圓的左焦點,與橢圓交于兩點,且的面積為,求直線的方程.18.(12分)已知函數(shù),.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實數(shù)k的取值范圍.19.(12分)某鮮花批發(fā)店每天早晨以每支2元的價格從鮮切花生產(chǎn)基地購入某種玫瑰,經(jīng)過保鮮加工后全部裝箱(每箱500支,平均每支玫瑰的保鮮加工成本為1元),然后以每箱2000元的價格整箱出售.由于鮮花的保鮮特點,制定了如下促銷策略:若每天下午3點以前所購進(jìn)的玫瑰沒有售完,則對未售出的玫瑰以每箱1200元的價格降價處理.根據(jù)經(jīng)驗,降價后能夠把剩余玫瑰全部處理完畢,且當(dāng)天不再購進(jìn)該種玫瑰.因庫房限制每天最多加工6箱.(1)若某天此鮮花批發(fā)店購入并加工了6箱該種玫瑰,在下午3點以前售出4箱,且6箱該種玫瑰被6位不同的顧客購買.現(xiàn)從這6位顧客中隨機(jī)選取2人贈送優(yōu)惠卡,求恰好一位是以2000元價格購買的顧客且另一位是以1200元價格購買的顧客的概率:(2)此鮮花批發(fā)店統(tǒng)計了100天該種玫瑰在每天下午3點以前的銷售量t(單位:箱),統(tǒng)計結(jié)果如下表所示(視頻率為概率):t/箱456頻數(shù)30xs①估計接下來的一個月(30天)該種玫瑰每天下午3點前的銷售量不少于5箱的天數(shù)并說明理由;②記,,若此批發(fā)店每天購進(jìn)的該種玫瑰箱數(shù)為5箱時所獲得的平均利潤最大,求實數(shù)b的最小值(不考慮其他成本,為的整數(shù)部分,例如:,).20.(12分)已知直線:(為參數(shù)),曲線:(為參數(shù)).(1)設(shè)與相交于兩點,求;(2)若把曲線上各點的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點P是曲線上的一個動點,求它到直線的距離的最大值.21.(12分)設(shè)函數(shù).(1)討論函數(shù)的單調(diào)性;(2)當(dāng)時,記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.22.(10分)某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分析:對四個命題逐一分析即可.詳解:對于①,由方差的性質(zhì)得:則數(shù)據(jù),,…,的方差為,故正確;對于②,逆命題為平面向量,滿足,則向量,夾角為銳角,是假命題,故錯誤;對于③,命題“,”的否定是“,”,正確;對于④,,,是的充分不必要條件,故正確.故選C.點睛:本題主要考查命題的真假判斷,涉及知識點較多,綜合性較強(qiáng),但難度不大.2、D【解析】
根據(jù)正切型函數(shù)的周期公式可求出函數(shù)的最小正周期.【詳解】由題意可知,函數(shù)的最小正周期,故選D.【點睛】本題考查正切型函數(shù)周期的求解,解題的關(guān)鍵在于利用周期公式進(jìn)行計算,考查計算能力,屬于基礎(chǔ)題.3、D【解析】
先作出直線與曲線圍成的平面圖形的簡圖,聯(lián)立直線與曲線方程,求出交點橫坐標(biāo),根據(jù)定積分即可求出結(jié)果.【詳解】作出曲線與直線圍成的平面圖形如下:由解得:或,所以曲線與直線圍成的平面圖形的面積為.故選D【點睛】本題主要考查定積分的應(yīng)用,求圍成圖形的面積只需轉(zhuǎn)化為對應(yīng)的定積分問題求解即可,屬于常考題型.4、A【解析】∵,∴,即,∴,∴,∴是以6為周期的周期數(shù)列.∵2019=336×6+3,∴.故選B.5、B【解析】試題分析:“若,則”的逆否命題為“若,則”,為真命題;若為假命題,則至少有一為假命題;命題,則,所以正確的個數(shù)是1,選B.考點:命題真假【名師點睛】若要判斷一個含有邏輯聯(lián)結(jié)詞的命題的真假,需先判斷構(gòu)成這個命題的每個簡單命題的真假,再依據(jù)“或”——一真即真,“且”——一假即假,“非”——真假相反,做出判斷即可.以命題真假為依據(jù)求參數(shù)的取值范圍時,首先要對兩個簡單命題進(jìn)行化簡,然后依據(jù)“p∨q”“p∧q”“非p”形式命題的真假,列出含有參數(shù)的不等式(組)求解即可.6、C【解析】
解方程求得,結(jié)合求得的取值范圍.將轉(zhuǎn)化為直線和在區(qū)間上有交點的問題來求得的最大值.【詳解】由得,注意到在上為增函數(shù)且,所以.由于的定義域為,所以由得.所以由得,畫出和的圖像如下圖所示,其中由圖可知的最大值即為.故選C.【點睛】本小題主要考查函數(shù)零點問題,考查指數(shù)方程和對數(shù)方程的解法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.7、B【解析】
設(shè)連線的中點為,再表示出動點的坐標(biāo),代入圓化簡即可.【詳解】設(shè)連線的中點為,則因為動點與定點連線的中點為,故,又在圓上,故,即即故選:B【點睛】本題主要考查了軌跡方程的一般方法,屬于基礎(chǔ)題型.8、B【解析】
由題,分析莖葉圖,找出質(zhì)量在[499,501]的個數(shù),再求其概率即可.【詳解】這個數(shù)據(jù)中位于的個數(shù)為,故所求概率為故選B【點睛】本題考查了莖葉圖得考查,熟悉莖葉圖是解題的關(guān)鍵,屬于基礎(chǔ)題.9、B【解析】∵隨機(jī)變量服從正態(tài)分布,,即對稱軸是,,∴,∴,∴.故選.10、B【解析】將函數(shù)的圖象沿軸向右平移個單位后,
得到函數(shù)的圖象對應(yīng)的函數(shù)解析式為再根據(jù)所得函數(shù)為偶函數(shù),可得故的一個可能取值為:故選B.11、A【解析】
利用f(1)=0得出a,b的關(guān)系,根據(jù)f′(x)=0有兩解可知y=2e2x與y=2ax+a+1﹣e2的函數(shù)圖象在(0,1)上有兩個交點,做出兩函數(shù)圖象,根據(jù)圖象判斷a的范圍.【詳解】解:∵f(1)=0,∴e2﹣a+b﹣1=0,∴b=﹣e2+a+1,∴f(x)=e2x﹣ax2+(﹣e2+a+1)x﹣1,∴f′(x)=2e2x﹣2ax﹣e2+a+1,令f′(x)=0得2e2x=2ax﹣a﹣1+e2,∵函數(shù)f′(x)在區(qū)間(0,1)內(nèi)有兩個零點,∴y=2e2x與y=2ax﹣a﹣1+e2的函數(shù)圖象在(0,1)上有兩個交點,作出y=2e2x與y=2ax﹣a﹣1+e2=a(2x﹣1)+e2﹣1函數(shù)圖象,如圖所示:若直線y=2ax﹣a﹣1+e2經(jīng)過點(1,2e2),則a=e2+1,若直線y=2ax﹣a﹣1+e2經(jīng)過點(0,2),則a=e2﹣3,∴e2﹣3<a<e2+1.故選:A.點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.12、A【解析】
根據(jù)題意,可知,,,代入即可求這組樣本數(shù)據(jù)的回歸直線方程,即可求解出答案。【詳解】依題意知,,而直線一定經(jīng)過點,所以,解得.故答案選A。【點睛】本題主要考查了根據(jù)線性回歸方程的性質(zhì)求回歸直線,線性回歸直線過點,這個點稱為樣本點的中心,回歸直線一定過此點。二、填空題:本題共4小題,每小題5分,共20分。13、-160【解析】
由,令得,所以展開式的常數(shù)項為.考點:二項式定理.14、【解析】分析:根據(jù)條件得到函數(shù)的對稱性,結(jié)合函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系判斷函數(shù)的單調(diào)性,利用特殊值法進(jìn)行求解即可.詳解:由,得函數(shù)關(guān)于對稱,當(dāng)時,,即在上單調(diào)遞減,不妨設(shè),則不等式等價為,即,即,得,故實數(shù)的取值范圍是.故答案為:.點睛:本題主要考查不等式的求解,利用條件判斷函數(shù)的對稱性和單調(diào)性,利用特殊值法是解決本題的關(guān)鍵.15、.【解析】依題設(shè),,由∥得,,解得.16、【解析】
根據(jù)偶函數(shù)性質(zhì)得出在上是減函數(shù),由此可得不等式.【詳解】∵是偶函數(shù),且在上是增函數(shù),,∴在上是減函數(shù),.又,∴,解得且.故答案為.【點睛】本題考查函數(shù)的奇偶性與單調(diào)性,由奇偶性和單調(diào)性結(jié)合起來解函數(shù)不等式,這種問題一類針對偶函數(shù),一類針對奇函數(shù),它們有固定的解題格式.如偶函數(shù)在上是增函數(shù),可轉(zhuǎn)化為,奇函數(shù)在上是增函數(shù),首先把不等式轉(zhuǎn)化為再轉(zhuǎn)化為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或.【解析】
(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為:1(a>b>0),由離心率為,點P為橢圓C上任意一點,且|PF|的最小值為1,求出a2=2,b2=1,由此能求出橢圓C的方程;(2)設(shè)的方程為:,代入得:,由弦長公式與點到線的距離公式分別求得,由面積公式得的方程即可求解【詳解】(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為:1(a>b>0),∵離心率為,∴,∴a,∵點P為橢圓C上任意一點,且|PF|的最小值為1,∴c=1,∴a2=b2+c2=b2+1,解得a2=2,b2=1,∴橢圓C的方程為1.(2)因,與軸不重合,故設(shè)的方程為:,代入得:,其恒成立,設(shè),則有,又到的距離,解得,的方程為:或.【點睛】本題考查橢圓方程的求法,考查直線方程的求法,考查直線與橢圓的位置關(guān)系,準(zhǔn)確計算是關(guān)鍵,是中檔題,解題時要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.18、(1)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是(2)【解析】
1利用導(dǎo)數(shù)求單調(diào)區(qū)間;2先分離參數(shù),轉(zhuǎn)化為在恒成立利用導(dǎo)數(shù)求最值即可求解.【詳解】(1),,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減.綜上,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2).令,則在恒成立.,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.所以的最大值在時取得,.所以.【點睛】本題主要考查了函數(shù)導(dǎo)數(shù)的應(yīng)用,函數(shù)恒成立問題,分離參數(shù),屬于基礎(chǔ)問題基礎(chǔ)方法.19、(1);(2)①;②【解析】
(1)根據(jù)古典概型概率公式計算可得;(2)①用100?30可得;②用購進(jìn)5箱的平均利潤>購進(jìn)6箱的平均利潤,解不等式可得.【詳解】解:(1)設(shè)這6位顧客是A,B,C,D,E,F(xiàn).其中3點以前購買的顧客是A,B,C,D.3點以后購買的顧客是E,F(xiàn).從這6為顧客中任選2位有15種選法:(A,B),(A,C),(A,D),(A,E),(A,F(xiàn)),(B,C),(B,D),(B,E),(B,F(xiàn)),(C,D),(C,E),(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn)),其中恰好一位是以2000元價格購買的顧客,另一位是以1200元價格購買的顧客的有8種:(A,E),(A,F(xiàn)),(B,E),(B,F(xiàn)),(C,E),(C,F(xiàn)),(D,E),(D,F(xiàn)).根據(jù)古典概型的概率公式得;(2)①依題意,∴,所以估計接下來的一個月(30天)內(nèi)該種玫瑰每天下午3點以前的銷售量不少于5箱的天數(shù)是天;②批發(fā)店毎天在購進(jìn)4箱數(shù)量的玫瑰時所獲得的平均利潤為:4×2000?4×500×3=2000元;批發(fā)店毎天在購進(jìn)5箱數(shù)量的玫瑰時所獲得的平均利潤為:元;批發(fā)店毎天在購進(jìn)6箱數(shù)量的玫瑰時所獲得的平均利潤為:由,解得:,則所以,要求b的最小值,則求的最大值,令,則,明顯,則在上單調(diào)遞增,則在上單調(diào)遞增,,則b的最小值為.【點睛】本題考查了古典概型及其概率計算公式,屬中檔題.20、(1);(2)【解析】
(1)消去直線參數(shù)方程的參數(shù),求得直線的普通方程.消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程,聯(lián)立直線和曲線的方程求得交點的坐標(biāo),再根據(jù)兩點間的距離公式求得.(2)根據(jù)坐標(biāo)變換求得曲線的參數(shù)方程,由此設(shè)出點坐標(biāo),利用點到直線距離公式列式,結(jié)合三角函數(shù)最值的求法,求得到直線的距離的最大值.【詳解】(1)的普通方程為,的普通方程為,聯(lián)立方程組,解得交點為,所以=;(2)曲線:(為參數(shù)).設(shè)所求的點為,則到直線的距離.當(dāng)時,取得最大值.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查直線和圓相交所得弦長的求法,考查坐標(biāo)變換以及點到直線距離公式,還考查了三角函數(shù)最值的求法,屬于中檔題.21、(1)當(dāng)時,函數(shù)的單調(diào)減區(qū)間是;單調(diào)增區(qū)間是;當(dāng)時,函數(shù)的單調(diào)增區(qū)間是;無單調(diào)減區(qū)間;當(dāng)時,函數(shù)的單調(diào)減區(qū)間是;單調(diào)增區(qū)間是.(2)存在整數(shù)滿足題意,且的最小值為0.【解析】試題分析:本題考查用導(dǎo)數(shù)討論函數(shù)的單調(diào)性和用導(dǎo)數(shù)解決函數(shù)中的能成立問題.(1)求導(dǎo)后根據(jù)導(dǎo)函數(shù)的符號判斷函數(shù)的單調(diào)性.(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 平?jīng)雎殬I(yè)技術(shù)學(xué)院《影視美術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 衡陽師范學(xué)院南岳學(xué)院《食品分析(含儀器分析)》2023-2024學(xué)年第一學(xué)期期末試卷
- 南陽職業(yè)學(xué)院《熱力學(xué)與統(tǒng)計物理》2023-2024學(xué)年第一學(xué)期期末試卷
- 勞務(wù)分包擔(dān)保合同
- 委托技術(shù)服務(wù)合同
- 委托設(shè)備維修合同
- 廢舊物資回收承包合同
- 《對不良誘惑說不》學(xué)會拒絕課件-3
- 20253月合同明確的樓宇自控系統(tǒng)第三方接入標(biāo)準(zhǔn)
- 店房租賃合同范本
- 第四單元 民族團(tuán)結(jié)與祖國統(tǒng)一 -【背誦清單】2022-2023學(xué)年八年級歷史下冊期末復(fù)習(xí)必背核心知識梳理(部編版)
- 2025年高考政治一輪復(fù)習(xí)知識清單選擇性必修三 《邏輯與思維》知識點復(fù)習(xí)
- 基于物聯(lián)網(wǎng)的農(nóng)產(chǎn)品質(zhì)量安全監(jiān)測平臺建設(shè)方案
- 臨床腸氣囊腫病影像診斷與鑒別
- DB11T 382-2017 建設(shè)工程監(jiān)理規(guī)程
- 產(chǎn)學(xué)合作協(xié)同育人項目教學(xué)內(nèi)容和課程體系改革項目申報書模板-基于產(chǎn)業(yè)學(xué)院的實踐應(yīng)用型人才培養(yǎng)
- DB34∕T 3790-2021 智慧藥房建設(shè)指南
- 被盜竊賠償協(xié)議書范文范本
- 中職數(shù)學(xué)基礎(chǔ)模塊下冊8-1隨機(jī)事件教案
- 汽車行業(yè)系列深度五:復(fù)刻手機(jī)高端之路 華為賦能智電未來
- 物理因子治療技術(shù)-光療法
評論
0/150
提交評論