




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,是水平放置的的直觀圖,則的面積是()A.6 B. C. D.122.已知函數(shù)在區(qū)間上恒成立,則實數(shù)的最小值是()A. B. C. D.3.已知直線x+ay+4=0與直線ax+4y-3=0互相平行,則實數(shù)a的值為()A.±2 B.2 C.-2 D.04.如圖,為正三角形,,,則多面體的正視圖(也稱主視圖)是A. B. C. D.5.某賽季中,甲?乙兩名籃球隊員各場比賽的得分莖葉圖如圖所示,若甲得分的眾數(shù)為15,乙得分的中位數(shù)為13,則()A.15 B.16 C.17 D.186.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.7.已知是兩條不重合的直線,為兩個不同的平面,則下列說法正確的是()A.若,是異面直線,那么與相交B.若//,,則C.若,則//D.若//,則8.如圖是函數(shù)的部分圖象2,則該解析式為()A. B.C. D.9.把黑、紅、白3張紙牌分給甲、乙、丙三人,則事件“甲分得紅牌”與“乙分得紅牌”是()A.對立事件B.互斥但不對立事件C.不可能事件D.必然事件10.若實數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列滿足則的最小值為__________.12.設函數(shù),則________.13.某餐廳的原料支出與銷售額(單位:萬元)之間有如下數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),用最小二乘法得出與的線性回歸方程,則表中的值為_________.245682535557514.在中,內(nèi)角的對邊分別為,若的周長為,面積為,,則__________.15.已知函數(shù),關于此函數(shù)的說法:①為周期函數(shù);②有對稱軸;③為的對稱中心;④;正確的序號是_________.16.方程cosx=三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,,求的值.18.在中,已知內(nèi)角所對的邊分別為,已知,,的面積.(1)求邊的長;(2)求的外接圓的半徑.19.寫出集合的所有子集.20.已知函數(shù)(1)若關于的不等式的解集為,求的值;(2)若對任意恒成立,求的取值范圍.21.已知函數(shù)的最小正周期為.(1)求的值和函數(shù)的值域;(2)求函數(shù)的單調(diào)遞增區(qū)間及其圖像的對稱軸方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由直觀圖畫法規(guī)則,可得是一個直角三角形,直角邊,,故選D.2、D【解析】
直接利用三角函數(shù)關系式的恒等變換,把函數(shù)的關系式變形為正弦型函數(shù),進一步利用恒成立問題的應用求出結(jié)果.【詳解】函數(shù),由因為,所以,即,當時,函數(shù)的最大值為,由于在區(qū)間上恒成立,故,實數(shù)的最小值是.故選:D【點睛】本題考查了兩角和的余弦公式、輔助角公式以及三角函數(shù)的最值,需熟記公式與三角函數(shù)的性質(zhì),同時考查了不等式恒成立問題,屬于基出題3、A【解析】
根據(jù)兩直線平性的必要條件可得4-a【詳解】∵直線x+ay+4=0與直線ax+4y-3=0互相平行;∴4×1-a?a=0,即4-a2=0當a=2時,直線分別為x+2y+4=0和2x+4y-3=0,平行,滿足條件當a=-2時,直線分別為x-2y+4=0和-2x+4y-3=0,平行,滿足條件;所以a=±2;故答案選A【點睛】本題考查兩直線平行的性質(zhì),解題時注意平行不包括重合的情況,屬于基礎題。4、D【解析】
為三角形,,平面,
且,則多面體的正視圖中,
必為虛線,排除B,C,
說明右側(cè)高于左側(cè),排除A.,故選D.5、A【解析】
由圖可得出,然后可算出答案【詳解】因為甲得分的眾數(shù)為15,所以由莖葉圖可知乙得分數(shù)據(jù)有7個,乙得分的中位數(shù)為13,所以所以故選:A【點睛】本題考查的是莖葉圖的知識,較簡單6、A【解析】
列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.7、D【解析】
采用逐一驗證法,結(jié)合線面以及線線之間的位置關系,可得結(jié)果.【詳解】若,是異面直線,與也可平行,故A錯若//,,也可以在內(nèi),故B錯若也可以在內(nèi),故C錯若//,則,故D對故選:D【點睛】本題主要考查線面以及線線之間的位置關系,屬基礎題.8、D【解析】
根據(jù)函數(shù)圖象依次求出振幅,周期,根據(jù)周期求出,將點代入解析式即可得解.【詳解】根據(jù)圖象可得:,最小正周期,,經(jīng)過,,,,,所以,所以函數(shù)解析式為:.故選:D【點睛】此題考查根據(jù)函數(shù)圖象求函數(shù)解析式,考查函數(shù)的圖象和性質(zhì),尤其是對振幅周期的辨析,最后求解的值,一般根據(jù)最值點求解.9、B【解析】試題分析:把黑、紅、白3張紙牌分給甲、乙、丙三人,事件“甲分得紅牌”與“乙分得紅牌”不可能同時發(fā)生,是互斥事件,但除了事件“甲分得紅牌”與“乙分得紅牌”還有“丙分得紅牌”,所以這兩者不是對立事件,答案為B.考點:互斥與對立事件.10、D【解析】畫出表示的可行域,如圖所示的開放區(qū)域,平移直線,由圖可知,當直線經(jīng)過時,直線在縱軸上的截距取得最大值,此時有最小值,無最大值,的取值范圍是,故選A.【方法點晴】本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先利用累加法求出an=1+n2﹣n,所以,設f(n),由此能導出n=5或6時f(n)有最小值.借此能得到的最小值.【詳解】解:∵an+1﹣an=2n,∴當n≥2時,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且對n=1也適合,所以an=n2﹣n+1.從而設f(n),令f′(n),則f(n)在上是單調(diào)遞增,在上是遞減的,因為n∈N+,所以當n=5或6時f(n)有最小值.又因為,,所以的最小值為故答案為【點睛】本題考查了利用遞推公式求數(shù)列的通項公式,考查了累加法.還考查函數(shù)的思想,構(gòu)造函數(shù)利用導數(shù)判斷函數(shù)單調(diào)性.12、【解析】
利用反三角函數(shù)的定義,解方程即可.【詳解】因為函數(shù),由反三角函數(shù)的定義,解方程,得,所以.故答案為:【點睛】本題考查了反三角函數(shù)的定義,屬于基礎題.13、60【解析】
由樣本中心過線性回歸方程,求得,,代入即可求得【詳解】由題知:,,將代入得故答案為:60【點睛】本題考查樣本中心與最小二乘法公式的關系,易錯點為將直接代入求解,屬于中檔題14、3【解析】
分析:由題可知,中已知,面積公式選用,得,又利用余弦定理,即可求出的值.詳解:,,由余弦定理,得又,,解得.故答案為3.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關系,從而達到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標出來,然后確定轉(zhuǎn)化的方向;第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化;第三步:求結(jié)果.15、①②④【解析】
由三角函數(shù)的性質(zhì)及,分別對各選項進行驗證,即可得出結(jié)論.【詳解】解:由函數(shù),可得①,可得為周期函數(shù),故①正確;②由,,故,是偶函數(shù),故有對稱軸正確,故②正確;③為偶數(shù)時,,為奇數(shù)時,故不為的對稱中心,故③不正確;④由,可得正確,故④正確.故答案為:①②④.【點睛】本題主要考查三角函數(shù)的值域、周期性、對稱性等相關知識,綜合性大,屬于中檔題.16、x|x=2kπ±【解析】
由誘導公式可得cosx=sinπ【詳解】因為方程cosx=sinπ所以x=2kπ±π故答案為x|x=2kπ±π【點睛】本題考查解三角函數(shù)的方程,余弦函數(shù)的周期性和誘導公式的應用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】
(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【詳解】(1)由題意知,由正弦定理可得,因為,則,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中解答中熟記三角形的正弦、余弦定理,準確計算是解答的掛念,著重考查了推理與計算能力,屬于基礎題.18、(1);(2)【解析】
(1)由三角形面積公式可構(gòu)造方程求得結(jié)果;(2)利用余弦定理可求得;利用正弦定理即可求得結(jié)果.【詳解】(1)由得:,解得:(2)由余弦定理得:由正弦定理得:【點睛】本題考查利用正弦定理、余弦定理和三角形面積公式解三角形的問題,考查學生對于解三角形部分的公式掌握的熟練程度,屬于基礎應用問題.19、【解析】
根據(jù)集合的子集的定義列舉出即可.【詳解】集合的所有子集有:【點睛】本題考查了集合的子集的定義,掌握子集的定義是解題的關鍵,本題是一道基礎題.20、(1);(2)【解析】
(1)不等式可化為,而解集為,可利用韋達定理或直接代入即可得到答案;(2)法一:討論和時,分離參數(shù)利用均值不等式即可得到取值范圍;法二:利用二次函數(shù)在上大于等于0恒成立,即可得到取值范圍.【詳解】(1)法一:不等式可化為,其解集為,由根與系數(shù)的關系可知,解得,經(jīng)檢驗時滿足題意.法二:由題意知,原不等式所對應的方程的兩個實數(shù)根為和4,將(或4)代入方程計算可得,經(jīng)檢驗時滿足題意.(2)法一:由題意可知恒成立,①若,則恒成立,符合題意。②若,則恒成立,而,當且僅當時取等號,所以,即.故實數(shù)的取值范圍為.法二:二次函數(shù)的對稱軸為.①若,即,函數(shù)在上單調(diào)遞增,恒成立,故;②若,即,此時在上單調(diào)遞減,在上單調(diào)遞增,由得.故;③若,即,此時函數(shù)在上單調(diào)遞減,由得,與矛盾,故不存在.綜上所述,實數(shù)的取值范圍為.【點睛】本題主要考查一元二次不等式的性質(zhì),不等式恒成立中含參問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五生活垃圾清運處置安全協(xié)議書
- 二零二五汽車維修合同范例
- 防爆材料采購合同范本
- 鋼材鍍鋅采購合同范本
- 2025年專升本藝術(shù)概論考試模擬試卷(文藝復興時期與巴洛克風格流派對比試題)
- 2025年初中地理模擬試卷:地理信息技術(shù)實踐應用試題與答案集
- 大學生情緒與管理
- 2025年專升本藝術(shù)概論藝術(shù)美學原理與應用考試試卷:重點難點解析
- 購買宣傳頁合同范本
- 2025年SAT語法考試試卷:語法知識測試與能力評估
- 2024年工業(yè)廢氣治理工(技師)職業(yè)技能鑒定理論試題庫(含答案)
- 電網(wǎng)公司主要輸變電設備狀態(tài)檢修導則
- 危大工程現(xiàn)場巡視檢查記錄表
- 2024年游泳館全面管理承包協(xié)議
- 臨時用電安全施工方案
- 時代楷模黃文秀課件
- 2024年四川大學華西醫(yī)院護士招聘歷年考試典型題及考點研判帶答案詳解
- 快遞員配送路線規(guī)劃
- 公司物流倉儲管理制度
- 【MOOC】工程材料學-華中科技大學 中國大學慕課MOOC答案
- (完整版)python學習課件024600
評論
0/150
提交評論