江西省南昌八中、南昌二十三中等四校2022年高一上數學期末質量檢測試題含解析_第1頁
江西省南昌八中、南昌二十三中等四校2022年高一上數學期末質量檢測試題含解析_第2頁
江西省南昌八中、南昌二十三中等四校2022年高一上數學期末質量檢測試題含解析_第3頁
江西省南昌八中、南昌二十三中等四校2022年高一上數學期末質量檢測試題含解析_第4頁
江西省南昌八中、南昌二十三中等四校2022年高一上數學期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數,則()A. B.C. D.2.已知直線是函數圖象的一條對稱軸,的最小正周期不小于,則的一個單調遞增區間為()A. B.C. D.3.已知函數f(x)=有兩不同的零點,則的取值范圍是()A.(?∞,0) B.(0,+∞)C.(?1,0) D.(0,1)4.下列函數中,以為最小正周期且在區間上為增函數的函數是()A. B.C. D.5.若函數的值域為,則實數的取值范圍是()A. B.C. D.6.直線的傾斜角A. B.C. D.7.已知扇形的周長是6,面積是2,則扇形的圓心角的弧度數α是()A.1 B.4C.1或4 D.2或48.如圖,在平面直角坐標系中,角的始邊為軸的非負半軸,終邊與單位圓的交點為,將繞坐標原點逆時針旋轉至,過點作軸的垂線,垂足為.記線段的長為,則函數的圖象大致是A. B.C. D.9.已知函數在區間上的值域為,對任意實數都有,則實數的取值范圍是()A. B.C. D.10.函數的最小正周期為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.冪函數的圖象經過點,則_____________.12.直線的傾斜角為,直線的傾斜角為,則__________13.已知函數,若,使得,則實數a的取值范圍是___________.14.下面四個命題:①定義域上單調遞增;②若銳角,滿足,則;③是定義在上的偶函數,且在上是增函數,若,則;④函數的一個對稱中心是;其中真命題的序號為______.15.已知函數的部分圖像如圖所示,則_______________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知集合,集合或,全集(1)若,求;(2)若,求實數a的取值范圍17.如圖,在平面直角坐標系中,點為單位圓與軸正半軸的交點,點為單位圓上的一點,且,點沿單位圓按逆時針方向旋轉角后到點.(1)當時,求的值;(2)設,求的取值范圍.18.已知圓O:,點,點,直線l過點P(1)若直線l與圓O相切,求l的方程;(2)若直線l與圓O交于不同的兩點A,B,線段AB的中點為M,且M的縱坐標為-,求△NAB的面積19.已知函數的部分圖象如圖所示.(1)求的解析式;(2)把圖象上所有點的橫坐標縮小到原來的,再向左平移個單位長度,向下平移1個單位長度,得到的圖象,求的單調區間.20.田忌和齊王賽馬是歷史上有名的故事,設齊王的三匹馬分別為,田忌的三匹馬分別為.三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優劣程度可以用以下不等式表示:.(1)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;(2)為了得到更大的獲勝概率,田忌預先派出探子到齊王處打探實情,得知齊王第一場必出上等馬,那么,田忌應怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?21.已知集合:①;②;③,集合(m為常數),從①②③這三個條件中任選一個作為集合A,求解下列問題:(1)定義,當時,求;(2)設命題p:,命題q:,若p是q成立的必要不充分條件,求實數m的取值范圍

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】由分段函數解析式及指數運算求函數值即可.【詳解】由題設,,所以.故選:B.2、B【解析】由周期得出的范圍,再由對稱軸方程求得值,然后由正弦函數性質確定單調性【詳解】根據題意,,所以,,,所以,,故,所以.令,,得,.令,得的一個單調遞增區間為.故選:B3、A【解析】函數f(x)=有兩不同的零點,可以轉化為直線與函數的圖象有兩個不同的交點,構造不等式即可求得的取值范圍.【詳解】由題可知方程有兩個不同的實數根,則直線與函數的圖象有兩個不同的交點,作出與的大致圖象如下:不妨設,由圖可知,,整理得,由基本不等式得,(當且僅當時等號成立)又,所以,解得,故選:A4、B【解析】對四個選項依次判斷最小正周期及單調區間,即可判斷.【詳解】對于A,,最小正周期為,單調遞增區間為,即,在內不單調,所以A錯誤;對于B,的最小正周期為,單調遞增區間為,即,在內單調遞增,所以B正確;對于C,的最小正周期為,所以C錯誤;對于D,的最小正周期為,所以D錯誤.綜上可知,正確的為B故選:B【點睛】本題考查了函數的最小正周期及單調區間的判斷,根據函數性質判斷即可,屬于基礎題.5、C【解析】因為函數的值域為,所以可以取到所有非負數,即的最小值非正.【詳解】因為,且的值域為,所以,解得.故選:C.6、A【解析】先求得直線的斜率,然后根據斜率和傾斜角的關系,求得.【詳解】可得直線的斜率為,由斜率和傾斜角的關系可得,又∵∴故選:A.【點睛】本小題主要考查直線傾斜角與斜率,屬于基礎題.7、C【解析】根據扇形的弧長公式和面積公式,列出方程組,求得的值,即可求解.【詳解】設扇形所在圓的半徑為,由扇形的周長是6,面積是2,可得,解得或,又由弧長公式,可得,即,當時,可得;當時,可得,故選:C.8、B【解析】,所以選B.點睛:有關函數圖象識別問題的常見題型及解題思路(1)由解析式確定函數圖象的判斷技巧:(1)由函數的定義域,判斷圖象左右的位置,由函數的值域,判斷圖象的上下位置;②由函數的單調性,判斷圖象的變化趨勢;③由函數的奇偶性,判斷圖象的對稱性;④由函數的周期性,判斷圖象的循環往復.(2)由實際情景探究函數圖象.關鍵是將問題轉化為熟悉的數學問題求解,要注意實際問題中的定義域問題.9、D【解析】根據關于對稱,討論與的關系,結合其區間單調性及對應值域求的范圍.【詳解】由題設,,易知:關于對稱,又恒成立,當時,,則,可得;當時,,則,可得;當,即時,,則,即,可得;當,即時,,則,即,可得;綜上,.故選:D.【點睛】關鍵點點睛:利用分段函數的性質,討論其對稱軸與給定區間的位置關系,結合對應值域及求參數范圍.10、C【解析】根據正弦型函數周期的求法即可得到答案.【詳解】故選:C.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】先代入點的坐標求出冪函數,再計算即可.【詳解】冪函數的圖象經過點,設,,解得故,所以.故答案為:.12、【解析】,所以,,故.填13、【解析】將“對,使得,”轉化為,再根據二次函數的性質和指數函數的單調性求得最值代入即可解得結果.【詳解】當時,,∴當時,,當時,為增函數,所以時,取得最大值,∵對,使得,∴,∴,解得.故答案為:.14、②③④【解析】由正切函數的單調性,可以判斷①真假;根據正弦函數的單調性,結合誘導公式,可以判斷②的真假;根據函數奇偶性與單調性的綜合應用,可以判斷③的真假;根據正弦型函數的對稱性,我們可以判斷④的真假,進而得到答案【詳解】解:由正切函數的單調性可得①“在定義域上單調遞增”為假命題;若銳角、滿足,即,即,則,故②為真命題;若是定義在上的偶函數,且在上是增函數,則函數在上為減函數,若,則,則,故③為真命題;由函數則當時,故可得是函數的一個對稱中心,故④為真命題;故答案為:②③④【點睛】本題考查的知識點是命題的真假判斷與應用,函數單調性的性質,偶函數,正弦函數的對稱性,是對函數性質的綜合考查,熟練掌握基本初等函數的性質是解答本題的關鍵15、【解析】首先確定函數的解析式,然后求解的值即可.【詳解】由題意可得:,當時,,令可得:,據此有:.故答案為:.【點睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分圖象求其解析式時,A比較容易看圖得出,困難的是求待定系數ω和φ,常用如下兩種方法:(1)由ω=即可求出ω;確定φ時,若能求出離原點最近的右側圖象上升(或下降)的“零點”橫坐標x0,則令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入點的坐標,利用一些已知點(最高點、最低點或“零點”)坐標代入解析式,再結合圖形解出ω和φ,若對A,ω的符號或對φ的范圍有要求,則可用誘導公式變換使其符合要求.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)(2)【解析】(1)利用并集和補集運算法則進行計算;(2)根據集合間的包含關系,比較端點值的大小,求出實數a的取值范圍.【小問1詳解】當時,,所以,則;【小問2詳解】因為A真含于B,所以滿足或,解得:,所以實數a的取值范圍是17、(1)(2)【解析】(1)根據三角函數的定義結合二倍角的正弦公式、誘導公式化簡可得的值;(2)利用輔助角公式可得,結合角的取值范圍可求得的取值范圍.【小問1詳解】解:由三角函數的定義,可得,當時,,即,,【小問2詳解】解:,,,所以,,,則,則,即的取值范圍為.18、(1)或(2)【解析】(1)根據題意,分直線斜率存在與不存在兩種情況討論求解,當直線斜率存在時,根據點到直線的距離公式求參數即可;(2)設直線l方程為,,進而與圓的方程聯立得中點的坐標,,解方程得直線方程,再求三角形面積即可.【小問1詳解】解:若直線l的斜率不存在,則l的方程為,此時直線l與圓O相切,符合題意;若直線l的斜率存在,設直線l的方程為,因為直線l與圓O相切,所以圓心(0,0)到l的距離為2,即,解得,所以直線l的方程為,即故直線l的方程為或【小問2詳解】解:設直線l的方程為,因為直線l與圓O相交,所以結合(1)得聯立方程組消去y得,設,則,設中點,,①代入直線l的方程得,②解得或(舍去)所以直線l的方程為因為圓心到直線l的距離,所以因為N到直線l的距離所以19、(1)(2)單調遞減區間為,單調遞增區間為【解析】(1)根據最值求的值;根據周期求的值;把點代入求的值.(2)首先根據圖象的變換求出的解析式,然后利用整體代入的方法即可求出的單調區間.【小問1詳解】由圖可知,所以,.又,所以,因為,所以.因為,所以,即,又|,得,所以.【小問2詳解】由題意得,由,得,故的單調遞減區間為,由,得,故的單調遞增區間為.20、(1)(2)田忌按或的順序出馬,才能使自己獲勝的概率達到最大【解析】(1)齊王與田忌賽馬,有六種情況,田忌獲勝的只有一種,故田忌獲勝的槪率為.(2)因齊王第一場必出上等馬,若田忌第一場必出上等馬或中等馬,則剩下二場,田忌至少輸一場,這時田忌必敗.為了使自己獲勝的概率最大,田忌第一場應出下等馬,在余下的兩場比賽中,田忌獲勝的概率為(余下兩場是齊王的中馬對田忌上馬和齊王的下馬對田忌的上馬;齊王的中馬對田忌下馬和齊王的下馬對田忌的中馬,前者田忌贏,后者田忌輸)解析:記與比賽為,其它同理.(1)齊王與田忌賽馬,有如下六種情況:;;;;;;其中田忌獲勝的只有一種:.故田忌獲勝的槪率為.(2)已知齊王第一場必出上等馬,若田忌第一場必出上等馬或中等馬,則剩下二場,田忌至少輸一場,這時田忌必敗.為了使自己獲勝的概率最大,田忌第一場應出下等馬,后兩場有兩種情形:①若齊王第二場派出中等馬,可能的對陣為:或.田忌獲勝的概率為,②若齊王第二場派出下等馬,可能的對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論