




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,熱氣球的探測器顯示,從熱氣球A看一棟樓頂部B的仰角為30°,看這棟樓底部C的俯角為60°,熱氣球A與樓的水平距離為120米,這棟樓的高度BC為()A.160米 B.(60+160) C.160米 D.360米2.如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數為()A.40° B.45° C.50° D.55°3.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm4.如果,那么的值為()A.1 B.2 C. D.5.在同一直角坐標系中,函數y=kx-k與(k≠0)的圖象大致是()A. B.C. D.6.如圖,將一塊三角板的直角頂點放在直尺的一邊上,當∠2=38°時,∠1=()A.52° B.38° C.42° D.60°7.計算(—2)2-3的值是()A、1B、2C、—1D、—28.今年春節某一天早7:00,室內溫度是6℃,室外溫度是-2℃,則室內溫度比室外溫度高()A.-4℃ B.4℃ C.8℃ D.-8℃9.如圖是幾何體的俯視圖,所表示數字為該位置小正方體的個數,則該幾何體的正視圖是()A. B. C. D.10.若△ABC與△DEF相似,相似比為2:3,則這兩個三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在每個小正方形的邊長為1的網格中,點A,B,C均在格點上.(1)AB的長等于____;(2)在△ABC的內部有一點P,滿足S△PABS△PBCS△PCA=1:2:3,請在如圖所示的網格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_______12.在日本核電站事故期間,我國某監測點監測到極微量的人工放射性核素碘﹣131,其濃度為0.0000872貝克/立方米.數據“0.0000872”用科學記數法可表示為________.13.在平面直角坐標系中,點A的坐標是(-1,2).作點A關于x軸的對稱點,得到點A1,再將點A1向下平移4個單位,得到點A2,則點A2的坐標是_________.14.化簡;÷(﹣1)=______.15.若關于的一元二次方程有實數根,則的取值范圍是________.16.如圖,在正方形ABCD中,O是對角線AC、BD的交點,過O點作OE⊥OF,OE、OF分別交AB、BC于點E、點F,AE=3,FC=2,則EF的長為_____.17.若兩個相似三角形的面積比為1∶4,則這兩個相似三角形的周長比是__________.三、解答題(共7小題,滿分69分)18.(10分)已知反比例函數的圖象經過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).19.(5分)解分式方程:.20.(8分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長.21.(10分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.22.(10分)某地區教育部門為了解初中數學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統計圖和條形統計圖(均不完整).請根據統計圖中的信息解答下列問題:本次抽查的樣本容量是
;在扇形統計圖中,“主動質疑”對應的圓心角為
度;將條形統計圖補充完整;如果該地區初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?23.(12分)如圖,一次函數y1=kx+b(k≠0)和反比例函數y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).求一次函數與反比例函數的解析式;根據圖象直接寫出y1>y2時,x的取值范圍.24.(14分)如圖,AB是的直徑,AF是切線,CD是垂直于AB的弦,垂足為點E,過點C作DA的平行線與AF相交于點F,已知,.求AD的長;求證:FC是的切線.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
過點A作AD⊥BC于點D.根據三角函數關系求出BD、CD的長,進而可求出BC的長.【詳解】如圖所示,過點A作AD⊥BC于點D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD?tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD?tan60°=120×=m.∴BC=BD+DC=m.故選C.【點睛】本題主要考查三角函數,解答本題的關鍵是熟練掌握三角函數的有關知識,并牢記特殊角的三角函數值.2、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點:1、平行線的性質;2、圓周角定理;3等腰三角形的性質3、C【解析】
連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據三角形的面積公式求出AD的長,再根據EF是線段AB的垂直平分線可知,點B關于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.4、D【解析】
先對原分式進行化簡,再尋找化簡結果與已知之間的關系即可得出答案.【詳解】故選:D.【點睛】本題主要考查分式的化簡求值,掌握分式的基本性質是解題的關鍵.5、D【解析】
根據k值的正負性分別判斷一次函數y=kx-k與反比例函數(k≠0)所經過象限,即可得出答案.【詳解】解:有兩種情況,當k>0是時,一次函數y=kx-k的圖象經過一、三、四象限,反比例函數(k≠0)的圖象經過一、三象限;當k<0時,一次函數y=kx-k的圖象經過一、二、四象限,反比例函數(k≠0)的圖象經過二、四象限;根據選項可知,D選項滿足條件.故選D.【點睛】本題考查了一次函數、反比例函數的圖象.正確這兩種圖象所經過的象限是解題的關鍵.6、A【解析】試題分析:如圖:∵∠3=∠2=38°°(兩直線平行同位角相等),∴∠1=90°﹣∠3=52°,故選A.考點:平行線的性質.7、A【解析】本題考查的是有理數的混合運算根據有理數的加法、乘方法則,先算乘方,再算加法,即得結果。解答本題的關鍵是掌握好有理數的加法、乘方法則。8、C【解析】
根據題意列出算式,計算即可求出值.【詳解】解:根據題意得:6-(-2)=6+2=8,
則室內溫度比室外溫度高8℃,
故選:C.【點睛】本題考查了有理數的減法,熟練掌握運算法則是解題的關鍵.9、B【解析】
根據俯視圖中每列正方形的個數,再畫出從正面看得到的圖形即可.【詳解】解:主視圖,如圖所示:.故選B.【點睛】本題考查由三視圖判斷幾何體;簡單組合體的三視圖.用到的知識點為:主視圖是從物體的正面看得到的圖形;看到的正方體的個數為該方向最多的正方體的個數.10、C【解析】
由△ABC與△DEF相似,相似比為2:3,根據相似三角形的性質,即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個三角形的面積比為4:1.故選C.【點睛】此題考查了相似三角形的性質.注意相似三角形的面積比等于相似比的平方.二、填空題(共7小題,每小題3分,滿分21分)11、;答案見解析.【解析】
(1)AB==.故答案為.(2)如圖AC與網格相交,得到點D、E,取格點F,連接FB并且延長,與網格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點P,點P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.12、【解析】
科學記數法的表示形式為ax10n的形式,其中1≤lal<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:0.0000872=故答案為:【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.13、(-1,-6)【解析】
直接利用關于x軸對稱點的性質得出點A1坐標,再利用平移的性質得出答案.【詳解】∵點A的坐標是(-1,2),作點A關于x軸的對稱點,得到點A1,
∴A1(-1,-2),
∵將點A1向下平移4個單位,得到點A2,
∴點A2的坐標是:(-1,-6).
故答案為:(-1,-6).【點睛】解決本題的關鍵是掌握好對稱點的坐標規律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數.14、-【解析】
直接利用分式的混合運算法則即可得出.【詳解】原式,,,.故答案為.【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.15、【解析】
由題意可得,△=9-4m≥0,由此求得m的范圍.【詳解】∵關于x的一元二次方程x2-3x+m=0有實數根,∴△=9-4m≥0,求得m≤.故答案為:【點睛】本題考核知識點:一元二次方程根判別式.解題關鍵點:理解一元二次方程根判別式的意義.16、【解析】
由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,從而求得EF的值.【詳解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF==.故答案為【點睛】本題考查了正方形的性質、三角形全等的性質和判定、勾股定理,在四邊形中常利用三角形全等的性質和勾股定理計算線段的長.17、【解析】試題分析:∵兩個相似三角形的面積比為1:4,∴這兩個相似三角形的相似比為1:1,∴這兩個相似三角形的周長比是1:1,故答案為1:1.考點:相似三角形的性質.三、解答題(共7小題,滿分69分)18、(1)m=1;(2)點P坐標為(﹣2m,1)或(6m,1).【解析】
(1)先根據反比例函數的圖象經過點A(﹣4,﹣3),利用待定系數法求出反比例函數的解析式為y=12x,再由反比例函數圖象上點的坐標特征得出y1=122m=6m,y2=126m=2m,然后根據y1﹣y2(2)設BD與x軸交于點E.根據三角形PBD的面積是8列出方程12?4【詳解】解:(1)設反比例函數的解析式為y=kx∵反比例函數的圖象經過點A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數的解析式為y=12x∵反比例函數的圖象經過點B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經檢驗,m=1是原方程的解,故m的值是1;(2)設BD與x軸交于點E,∵點B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點P在x軸上,∴點P坐標為(﹣2m,1)或(6m,1).【點睛】本題考查了待定系數法求反比例函數的解析式,反比例函數圖象上點的坐標特征以及三角形的面積,正確求出雙曲線的解析式是解題的關鍵.19、.【解析】試題分析:方程最簡公分母為,方程兩邊同乘將分式方程轉化為整式方程求解,要注意檢驗.試題解析:方程兩邊同乘,得:,整理解得:,經檢驗:是原方程的解.考點:解分式方程.20、(1)證明見解析;(2)1.【解析】試題分析:(1)取BD的中點0,連結OE,如圖,由∠BED=90°,根據圓周角定理可得BD為△BDE的外接圓的直徑,點O為△BDE的外接圓的圓心,再證明OE∥BC,得到∠AEO=∠C=90°,于是可根據切線的判定定理判斷AC是△BDE的外接圓的切線;(2)設⊙O的半徑為r,根據勾股定理得62+r2=(r+23)2,解得r=23,根據平行線分線段成比例定理,由OE∥BC得AECE試題解析:(1)證明:取BD的中點0,連結OE,如圖,∵DE⊥EB,∴∠BED=90°,∴BD為△BDE的外接圓的直徑,點O為△BDE的外接圓的圓心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圓的切線;(2)解:設⊙O的半徑為r,則OA=OD+DA=r+23,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+23)2,解得r=23,∵OE∥BC,∴AECE=AO∴CE=1.考點:1、切線的判定;2、勾股定理21、(1)見解析;(2)【解析】
(1)根據矩形的性質可得AB=CD,∠C=∠A=90°,再根據折疊的性質可得DE=CD,∠C=∠E=90°,然后利用“角角邊”證明即可;
(2)設AF=x,則BF=DF=8-x,根據勾股定理列方程求解即可.【詳解】(1)證明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折疊得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,設AF=x,則BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣x)2=x2+62,x=,即AF=【點睛】本題考查了翻折變換的性質,全等三角形的判定與性質,矩形的性質,勾股定理,翻折前后對應邊相等,對應角相等,利用勾股定理列出方程是解題的關鍵.22、(1)560;(2)54;(3)補圖見解析;(4)18000人【解析】
(1)本次調查的樣本容量為224÷40%=5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 日用品銷售合同
- 企業股權轉讓協議合同
- 堤防工程施工合同
- 擋土墻工程勞務分包合同
- 房屋買賣居間協議和合同
- 承包合同公司承包合同
- 務工付款合同協議書
- 應屆畢業生簽合同協議書
- 買賣魚合同協議
- 超市帶貨裝讓合同協議書
- 第15課《青春之光》課件-2024-2025學年統編版語文七年級下冊
- DL∕T 5161.8-2018 電氣裝置安裝工程質量檢驗及評定規程 第8部分:盤、柜及二次回路接線施工質量檢驗
- 《鋼鐵是怎樣煉成的》知識競賽課件講義
- 濟青高速涵洞定期檢查報告模版
- 高考寫作指導:作文訓練之語言的提升
- 項目定標審批表
- 弱電安裝安全安全技術交底
- Commvault數據庫備份恢復功能介紹
- SJG 05-2020 基坑支護技術標準-高清現行
- 部編版語文一年級下冊第一單元教材分析及教學建議
- 洲際酒店集團--皇冠酒店設計標準手冊274P
評論
0/150
提交評論