2023屆寧夏中衛市名校中考數學模擬預測題含解析_第1頁
2023屆寧夏中衛市名校中考數學模擬預測題含解析_第2頁
2023屆寧夏中衛市名校中考數學模擬預測題含解析_第3頁
2023屆寧夏中衛市名校中考數學模擬預測題含解析_第4頁
2023屆寧夏中衛市名校中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在下列網格中,小正方形的邊長為1,點A、B、O都在格點上,則的正弦值是A. B. C. D.2.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π3.一次函數與反比例函數在同一個坐標系中的圖象可能是()A. B. C. D.4.在△ABC中,點D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=5.﹣3的相反數是()A. B. C. D.6.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點是BD的中點,若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.57.已知拋物線y=ax2+bx+c與反比例函數y=的圖象在第一象限有一個公共點,其橫坐標為1,則一次函數y=bx+ac的圖象可能是(

)A.

B.

C.

D.8.在下列實數中,﹣3,,0,2,﹣1中,絕對值最小的數是()A.﹣3 B.0 C. D.﹣19.對于有理數x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數,等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.1110.如圖,一張半徑為的圓形紙片在邊長為的正方形內任意移動,則在該正方形內,這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.寫出一個經過點(1,2)的函數表達式_____.12.2017年12月31日晚,鄭東新區如意湖文化廣場舉行了“文化跨年夜、出彩鄭州人”的跨年慶祝活動,大學生小明和小剛都各自前往觀看了演出,而且他們兩人前往時選擇了以下三種交通工具中的一種:共享單車、公交、地鐵,則他們兩人選擇同一種交通工具前往觀看演出的概率為_____.13.正多邊形的一個外角是,則這個多邊形的內角和的度數是___________________.14.若從-3,-1,0,1,3這五個數中隨機抽取一個數記為a,再從剩下的四個數中任意抽取一個數記為b,恰好使關于x,y的二元一次方程組有整數解,且點(a,b)落在雙曲線上的概率是_________.15.如圖,以AB為直徑的半圓沿弦BC折疊后,AB與相交于點D.若,則∠B=________°.16.關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數根,則m的取值范圍是_____.17.如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,DE平分∠BDC交BC于點E,則=.三、解答題(共7小題,滿分69分)18.(10分)某數學教師為了解所教班級學生完成數學課前預習的具體情況,對該班部分學生進行了一學期的跟蹤調查,將調查結果分為四類并給出相應分數,A:很好,95分;B:較好75分;C:一般,60分;D:較差,30分.并將調查結果繪制成以下兩幅不完整的統計圖,請你根據統計圖解答下列問題:(Ⅰ)該教師調查的總人數為,圖②中的m值為;(Ⅱ)求樣本中分數值的平均數、眾數和中位數.19.(5分)在以“關愛學生、安全第一”為主題的安全教育宣傳月活動中,某學校為了了解本校學生的上學方式,在全校范圍內隨機抽查部分學生,了解到上學方式主要有:A:結伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數據整理繪制成如下兩幅不完整的統計圖.請根據圖中信息,解答下列問題:(1)本次抽查的學生人數是多少人?(2)請補全條形統計圖;請補全扇形統計圖;(3)“自行乘車”對應扇形的圓心角的度數是度;(4)如果該校學生有2000人,請你估計該校“家人接送”上學的學生約有多少人?20.(8分)某學校“智慧方園”數學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經過社團成員討論發現,過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.21.(10分)某小區為了安全起見,決定將小區內的滑滑板的傾斜角由45°調為30°,如圖,已知原滑滑板AB的長為4米,點D,B,C在同一水平地面上,調整后滑滑板會加長多少米?(結果精確到0.01米,參考數據:,,)22.(10分)為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調查他們每天自主學習的時間.根據調查結果,制作了兩幅不完整的統計圖(圖1,圖2),請根據統計圖中的信息回答下列問題:(1)本次調查的學生人數是人;(2)圖2中α是度,并將圖1條形統計圖補充完整;(3)請估算該校九年級學生自主學習時間不少于1.5小時有人;(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.23.(12分)如圖,某中學數學課外學習小組想測量教學樓的高度,組員小方在處仰望教學樓頂端處,測得,小方接著向教學樓方向前進到處,測得,已知,,.(1)求教學樓的高度;(2)求的值.24.(14分)在平面直角坐標系中,O為原點,點A(3,0),點B(0,4),把△ABO繞點A順時針旋轉,得△AB′O′,點B,O旋轉后的對應點為B′,O.(1)如圖1,當旋轉角為90°時,求BB′的長;(2)如圖2,當旋轉角為120°時,求點O′的坐標;(3)在(2)的條件下,邊OB上的一點P旋轉后的對應點為P′,當O′P+AP′取得最小值時,求點P′的坐標.(直接寫出結果即可)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

由題意根據勾股定理求出OA,進而根據正弦的定義進行分析解答即可.【詳解】解:由題意得,,,由勾股定理得,,.故選:A.【點睛】本題考查的是銳角三角函數的定義,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.2、A【解析】

利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了圓周角定理和弧長公式.3、B【解析】當k>0時,一次函數y=kx﹣k的圖象過一、三、四象限,反比例函數y=的圖象在一、三象限,∴A、C不符合題意,B符合題意;當k<0時,一次函數y=kx﹣k的圖象過一、二、四象限,反比例函數y=的圖象在二、四象限,∴D不符合題意.故選B.4、D【解析】

根據平行線分線段成比例定理的逆定理,當或時,,然后可對各選項進行判斷.【詳解】解:當或時,,

即或.

所以D選項是正確的.【點睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.也考查了平行線分線段成比例定理的逆定理.5、D【解析】

相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.【詳解】根據相反數的定義可得:-3的相反數是3.故選D.【點睛】本題考查相反數,題目簡單,熟記定義是關鍵.6、B【解析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點是BD的中點,∴CP=BD=1.故選B.7、B【解析】分析:根據拋物線y=ax2+bx+c與反比例函數y=的圖象在第一象限有一個公共點,可得b>0,根據交點橫坐標為1,可得a+b+c=b,可得a,c互為相反數,依此可得一次函數y=bx+ac的圖象.詳解:∵拋物線y=ax2+bx+c與反比例函數y=的圖象在第一象限有一個公共點,∴b>0,∵交點橫坐標為1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函數y=bx+ac的圖象經過第一、三、四象限.故選B.點睛:考查了一次函數的圖象,反比例函數的性質,二次函數的性質,關鍵是得到b>0,ac<0.8、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數是0,故選:B.9、B【解析】

先由運算的定義,寫出3△5=25,4△7=28,得到關于a、b、c的方程組,用含c的代數式表示出a、b.代入2△2求出值.【詳解】由規定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點睛】本題考查了新運算、三元一次方程組的解法.解決本題的關鍵是根據新運算的意義,正確的寫出3△5=25,4△7=28,2△2.10、C【解析】

這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、y=x+1(答案不唯一)【解析】

本題屬于結論開放型題型,可以將函數的表達式設計為一次函數、反比例函數、二次函數的表達式.答案不唯一.【詳解】解:所求函數表達式只要圖象經過點(1,2)即可,如y=2x,y=x+1,…答案不唯一.

故答案可以是:y=x+1(答案不唯一).【點睛】本題考查函數,解題的關鍵是清楚幾種函數的一般式.12、【解析】

首先根據題意畫樹狀圖,然后根據樹狀圖即可求得所有等可能的結果,最后用概率公式求解即可求得答案.【詳解】樹狀圖如圖所示,

∴一共有9種等可能的結果;

根據樹狀圖知,兩人選擇同一種交通工具前往觀看演出的有3種情況,

∴選擇同一種交通工具前往觀看演出的概率:,

故答案為.【點睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數與總情況數之比.13、540°【解析】

根據多邊形的外角和為360°,因此可以求出多邊形的邊數為360°÷72°=5,根據多邊形的內角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內角和與外角和14、【解析】分析:根據題意可以寫出所有的可能性,然后將所有的可能性代入方程組和雙曲線,找出符號要求的可能性,從而可以解答本題.詳解:從﹣3,﹣1,0,1,3這五個數中隨機抽取一個數記為a,再從剩下的四個數中任意抽取一個數記為b,則(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),將上面所有的可能性分別代入關于x,y的二元一次方程組有整數解,且點(a,b)落在雙曲線上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使關于x,y的二元一次方程組有整數解,且點(a,b)落在雙曲線上的概率是:.故答案為.點睛:本題考查了列表法與樹狀圖法,解題的關鍵是明確題意,寫出所有的可能性.15、18°【解析】

由折疊的性質可得∠ABC=∠CBD,根據在同圓和等圓中,相等的圓周角所對的弧相等可得,再由和半圓的弧度為180°可得的度數×5=180°,即可求得的度數為36°,再由同弧所對的圓周角的度數為其弧度的一半可得∠B=18°.【詳解】解:由折疊的性質可得∠ABC=∠CBD,∴,∵,∴的度數+的度數+的度數=180°,即的度數×5=180°,∴的度數為36°,∴∠B=18°.故答案為:18.【點睛】本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.還考查了圓弧的度數與圓周角之間的關系.16、m≤1【解析】

根據一元二次方程有實數根,得出△≥0,建立關于m的不等式,求出m的取值范圍即可.【詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.【點睛】此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關系:△>0,方程有兩個不相等的實數根;△=0,方程有兩個相等的實數根;△<0,方程沒有實數根是本題的關鍵.17、3-【解析】試題分析:因為△ABC中,AB=AC,∠A=36°所以∠ABC=∠ACB=72°因為BD平分∠ABC交AC于點D所以∠ABD=∠CBD=36°=∠A因為DE平分∠BDC交BC于點E所以∠CDE=∠BDE=36°=∠A所以AD=BD=BC根據黃金三角形的性質知,BCAC=5-1EC=所以EC考點:黃金三角形點評:黃金三角形是一個等腰三角形,它的頂角為36°,每個底角為72°.它的腰與它的底成黃金比.當底角被平分時,角平分線分對邊也成黃金比,三、解答題(共7小題,滿分69分)18、(Ⅰ)25、40;(Ⅱ)平均數為68.2分,眾數為75分,中位數為75分.【解析】

(1)由直方圖可知A的總人數為5,再依據其所占比例20%可求解總人數;由直方圖中B的人數為10及總人數可知m的值;(2)根據平均數、眾數和中位數的定義求解即可.【詳解】(Ⅰ)該教師調查的總人數為(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案為:25、40;(Ⅱ)由條形圖知95分的有5人、75分的有10人、60分的有6人、30分的有4人,則樣本分知的平均數為(分),眾數為75分,中位數為第13個數據,即75分.【點睛】理解兩幅統計圖中各數據的含義及其對應關系是解題關鍵.19、(1)本次抽查的學生人數是120人;(2)見解析;(3)126;(4)該校“家人接送”上學的學生約有500人.【解析】

(1)本次抽查的學生人數:18÷15%=120(人);(2)A:結伴步行人數120﹣42﹣30﹣18=30(人),據此補全條形統計圖;(3)“自行乘車”對應扇形的圓心角的度數360°×=126°;(4)估計該校“家人接送”上學的學生約有:2000×25%=500(人).【詳解】解:(1)本次抽查的學生人數:18÷15%=120(人),答:本次抽查的學生人數是120人;(2)A:結伴步行人數120﹣42﹣30﹣18=30(人),補全條形統計圖如下:“結伴步行”所占的百分比為×100%=25%;“自行乘車”所占的百分比為×100%=35%,

“自行乘車”在扇形統計圖中占的度數為360°×35%=126°,補全扇形統計圖,如圖所示;(3)“自行乘車”對應扇形的圓心角的度數360°×=126°,故答案為126;(4)估計該校“家人接送”上學的學生約有:2000×25%=500(人),答:該校“家人接送”上學的學生約有500人.【點睛】本題主要考查條形統計圖及扇形統計圖及相關計算,用樣本估計總體.解題的關鍵是讀懂統計圖,從條形統計圖中得到必要的信息是解決問題的關鍵.20、(1)75;4;(2)CD=4.【解析】

(1)根據平行線的性質可得出∠ADB=∠OAC=75°,結合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質可求出OD的值,進而可得出AD的值,由三角形內角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【點睛】本題考查了相似三角形的性質、等腰三角形的判定與性質、勾股定理以及平行線的性質,解題的關鍵是:(1)利用相似三角形的性質求出OD的值;(2)利用勾股定理求出BE、CD的長度.21、改善后滑板會加長1.1米.【解析】

在Rt△ABC中,根據AB=4米,∠ABC=45°,求出AC的長度,然后在Rt△ADC中,解直角三角形求AD的長度,用AD-AB即可求出滑板加長的長度.【詳解】解:在Rt△ABC中,AC=AB?sin45°=4×=,在Rt△ADC中,AD=2AC=,AD-AB=-4≈1.1.答:改善后滑板會加長1.1米.【點睛】本題主要考查了解直角三角形的應用,利用這兩個直角三角形公共的直角邊解直角三角形是解答本題的關鍵.22、(1)40;(2)54,補圖見解析;(3)330;(4).【解析】

(1)根據由自主學習的時間是1小時的人數占30%,可求得本次調查的學生人數;(2),由自主學習的時間是0.5小時的人數為40×35%=14;(3)求出這40名學生自主學習時間不少于1.5小時的百分比乘以600即可;(4)根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與選中小亮A的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵自主學習的時間是1小時的有12人,占30%,∴12÷30%=40,故答案為40;(2),故答案為54;自主學習的時間是0.5小時的人數為40×35%=14;補充圖形如圖:(3)6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論