2023屆貴州銅仁松桃縣中考數學最后沖刺模擬試卷含解析_第1頁
2023屆貴州銅仁松桃縣中考數學最后沖刺模擬試卷含解析_第2頁
2023屆貴州銅仁松桃縣中考數學最后沖刺模擬試卷含解析_第3頁
2023屆貴州銅仁松桃縣中考數學最后沖刺模擬試卷含解析_第4頁
2023屆貴州銅仁松桃縣中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如果實數a=,且a在數軸上對應點的位置如圖所示,其中正確的是()A.B.C.D.2.如圖的平面圖形繞直線l旋轉一周,可以得到的立體圖形是()A. B. C. D.3.某商品價格為元,降價10%后,又降價10%,因銷售量猛增,商店決定再提價20%,提價后這種商品的價格為()A.0.96元 B.0.972元 C.1.08元 D.元4.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃5.一組數據3、2、1、2、2的眾數,中位數,方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.26.為了紀念物理學家費米,物理學界以費米(飛米)作為長度單位.已知1飛米等于0.000000000000001米,把0.000000000000001這個數用科學記數法表示為()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣127.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.8.若點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,則m+n的值是()A.﹣5B.﹣3C.3D.19.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛入立交橋,均以10m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應關系如圖2所示.結合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m10.某市2017年實現生產總值達280億的目標,用科學記數法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×1010二、填空題(本大題共6個小題,每小題3分,共18分)11.定義:在平面直角坐標系xOy中,把從點P出發沿縱或橫方向到達點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為1,即PS+SQ=1或PT+TQ=1.環保低碳的共享單車,正式成為市民出行喜歡的交通工具.設A,B,C三個小區的坐標分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標為_____.12.如圖所示,把一張長方形紙片沿折疊后,點分別落在點的位置.若,則等于________.13.若關于x的方程有兩個相等的實數根,則m的值是_________.14.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F分別是底邊AD,BC的中點,連接EF,點P是EF上的任意一點,連接PA,PB,則PA+PB的最小值為__.15.某種商品因換季準備打折出售,如果按定價的七五折出售將賠25元,而按定價的九折出售將賺20元,則商品的定價是______元16.如圖,在四邊形ABCD中,點E、F分別是邊AB、AD的中點,BC=15,CD=9,EF=6,∠AFE=50°,則∠ADC的度數為_____.三、解答題(共8題,共72分)17.(8分)解不等式組.18.(8分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調查,并將調查結果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據調查結果發現該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據調查情況把學生都進行了歸類,并制作了如下兩幅統計圖,請你結合圖中所給信息解答下列問題:七年級(1)班學生總人數為_______人,扇形統計圖中D類所對應扇形的圓心角為_____度,請補全條形統計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.19.(8分)如圖所示,一堤壩的坡角,坡面長度米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得坡面的坡角,則此時應將壩底向外拓寬多少米?(結果保留到米)(參考數據:,,)20.(8分)如圖,已知∠AOB與點M、N求作一點P,使點P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)21.(8分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN22.(10分)一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關于加滿油后已行駛的路程(千米)的函數圖象.根據圖象,直接寫出汽車行駛400千米時,油箱內的剩余油量,并計算加滿油時油箱的油量;求關于的函數關系式,并計算該汽車在剩余油量5升時,已行駛的路程.23.(12分)如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.求拋物線y=ax2+2x+c的解析式:;點D為拋物線上對稱軸右側、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;②點Q在拋物線對稱軸上,其縱坐標為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.24.已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:估計的大小,進而在數軸上找到相應的位置,即可得到答案.詳解:由被開方數越大算術平方根越大,即故選C.點睛:考查了實數與數軸的的對應關系,以及估算無理數的大小,解決本題的關鍵是估計的大小.2、B【解析】

根據面動成體以及長方形繞一邊所在直線旋轉一周得圓柱即可得答案.【詳解】由圖可知所給的平面圖形是一個長方形,長方形繞一邊所在直線旋轉一周得圓柱,故選B.【點睛】本題考查了點、線、面、體,熟記各種常見平面圖形旋轉得到的立體圖形是解題關鍵.3、B【解析】

提價后這種商品的價格=原價×(1-降低的百分比)(1-百分比)×(1+增長的百分比),把相關數值代入求值即可.【詳解】第一次降價后的價格為a×(1-10%)=0.9a元,第二次降價后的價格為0.9a×(1-10%)=0.81a元,∴提價20%的價格為0.81a×(1+20%)=0.972a元,故選B.【點睛】本題考查函數模型的選擇與應用,考查列代數式,得到第二次降價后的價格是解決本題的突破點;得到提價后這種商品的價格的等量關系是解決本題的關鍵.4、B【解析】

求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉化為減法運算,列算式計算即可.【詳解】3-(-4)=3+4=7℃.

故選B.5、B【解析】試題解析:從小到大排列此數據為:1,2,2,2,3;數據2出現了三次最多為眾數,2處在第3位為中位數.平均數為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數是2,眾數是2,方差為0.1.故選B.6、A【解析】

根據科學記數法的表示方法解答.【詳解】解:把這個數用科學記數法表示為.故選:.【點睛】此題重點考查學生對科學記數法的應用,熟練掌握小于0的數用科學記數法表示法是解題的關鍵.7、B【解析】

過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據勾股定理得到AF===,根據平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質得到=,求得AM=AF=,根據相似三角形的性質得到=,求得AN=AF=,即可得到結論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構造相似三角形是本題的關鍵,且求長度問題一般需用到勾股定理來解決,常作垂線8、D【解析】【分析】根據關于y軸的對稱點的坐標特點:橫坐標互為相反數,縱坐標不變,據此求出m、n的值,代入計算可得.【詳解】∵點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故選D.【點睛】本題考查了關于y軸對稱的點,熟練掌握關于y軸對稱的兩點的橫坐標互為相反數,縱坐標不變是解題的關鍵.9、C【解析】分析:結合2個圖象分析即可.詳解:A.根據圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關鍵.10、D【解析】

根據科學計數法的定義來表示數字,選出正確答案.【詳解】解:把一個數表示成a(1≤a<10,n為整數)與10的冪相乘的形式,這種記數法叫做科學記數法,280億用科學計數法表示為2.8×1010,所以答案選D.【點睛】本題考查學生對科學計數法的概念的掌握和將數字用科學計數法表示的能力.二、填空題(本大題共6個小題,每小題3分,共18分)11、(1,﹣2).【解析】

若設M(x,y),則由題目中對“實際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).12、50°【解析】

先根據平行線的性質得出∠DEF的度數,再根據翻折變換的性質得出∠D′EF的度數,根據平角的定義即可得出結論.【詳解】∵AD∥BC,∠EFB=65°,

∴∠DEF=65°,

又∵∠DEF=∠D′EF,

∴∠D′EF=65°,

∴∠AED′=50°.【點睛】本題考查翻折變換(折疊問題)和平行線的性質,解題的關鍵是掌握翻折變換(折疊問題)和平行線的性質.13、m=-【解析】

根據題意可以得到△=0,從而可以求得m的值.【詳解】∵關于x的方程有兩個相等的實數根,∴△=,解得:.故答案為.14、2【解析】

將PA+PB轉化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點,四邊形ABCD是等腰梯形,B點關于EF的對稱點C點,AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉化PA+PC的值,從而找出其最小值求解.15、300【解析】

設成本為x元,標價為y元,根據已知條件可列二元一次方程組即可解出定價.【詳解】設成本為x元,標價為y元,依題意得,解得故定價為300元.【點睛】此題主要考查二元一次方程組的應用,解題的關鍵是根據題意列出方程再求解.16、140°【解析】

如圖,連接BD,∵點E、F分別是邊AB、AD的中點,∴EF是△ABD的中位線,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案為:140°.三、解答題(共8題,共72分)17、x<﹣1.【解析】分析:按照解一元一次不等式組的一般步驟解答即可.詳解:,由①得x≤1,由②得x<﹣1,∴原不等式組的解集是x<﹣1.點睛:“熟練掌握一元一次不等式組的解法”是正確解答本題的關鍵.18、48;105°;2【解析】試題分析:根據B的人數和百分比求出總人數,根據D的人數和總人數的得出D所占的百分比,然后得出圓心角的度數,根據總人數求出C的人數,然后補全統計圖;記A類學生擅長書法的為A1,擅長繪畫的為A2,根據題意畫出表格,根據概率的計算法則得出答案.試題解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),補全圖形如下:(2)記A類學生擅長書法的為A1,擅長繪畫的為A2,則可列下表:

A1

A1

A2

A2

A1

A1

A2

A2

∴由上表可得:P(考點:統計圖、概率的計算.19、6.58米【解析】試題分析:過A點作AE⊥CD于E.在Rt△ABE中,根據三角函數可得AE,BE,在Rt△ADE中,根據三角函數可得DE,再根據DB=DE﹣BE即可求解.試題解析:過A點作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB?sin62°=25×0.88=22米,BE=AB?cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此時應將壩底向外拓寬大約6.58米.考點:解直角三角形的應用-坡度坡角問題.20、見解析【解析】

作∠AOB的角平分線和線段MN的垂直平分線,它們的交點即是要求作的點P.【詳解】解:①作∠AOB的平分線OE,②作線段MN的垂直平分線GH,GH交OE于點P.點P即為所求.【點睛】本題考查了角平分線和線段垂直平分線的尺規作法,熟練掌握角平分線和線段垂直平分線的的作圖步驟是解答本題的關鍵.21、詳見解析.【解析】

只要證明∠EAM=∠ECN,根據同位角相等兩直線平行即可證明.【詳解】證明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.【點睛】本題考查平行線的判定和性質,解題的關鍵是熟練掌握平行線的性質和判定,屬于中考基礎題.22、(1)汽車行駛400千米,剩余油量30升,加滿油時,油量為70升;(2)已行駛的路程為650千米.【解析】

(1)觀察圖象,即可得到油箱內的剩余油量,根據耗油量計算出加滿油時油箱的油量;用待定系數法求出一次函數解析式,再代入進行運算即可.【詳解】(1)汽車行駛400千米,剩余油量30升,即加滿油時,油量為70升.(2)設,把點,坐標分別代入得,,∴,當時,,即已行駛的路程為650千米.【點睛】本題主要考查了待定系數法求一次函數解析式,一次函數圖象上點的坐標特征等,關鍵是掌握待定系數法求函數解析式.23、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標為(,)或(,);②<t<.【解析】

(1)設拋物線解析式為y=a(x+1)(x﹣3),根據系數的關系,即可解答(2)先求出當x=0時,C的坐標,設直線AC的解析式為y=px+q,把A,C的坐標代入即可求出AC的解析式,過D作DG垂直拋物線對稱軸于點G,設D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過點C作AC的垂線交拋物線于另一點P1,求出直線PC的解析式,再結合拋物線的解析式可求出P1,過點A作AC的垂線交拋物線于另一點P2,再利用A的坐標求出P2,即可解答②觀察函數圖象與△ACQ為銳角三角形時的情況,即可解答【詳解】解:(1)設拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;(2)當x=0時,y=﹣x2+2x+3=3,則C(0,3),設直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3,如答圖1,過D作DG垂直拋物線對稱軸于點G,設D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知拋物線對稱軸為x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴當x=,DE+DF有最大值為;答圖1答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論