浙江省杭州市蕭山區城廂片2022-2023學年八年級數學第二學期期末質量檢測模擬試題含解析_第1頁
浙江省杭州市蕭山區城廂片2022-2023學年八年級數學第二學期期末質量檢測模擬試題含解析_第2頁
浙江省杭州市蕭山區城廂片2022-2023學年八年級數學第二學期期末質量檢測模擬試題含解析_第3頁
浙江省杭州市蕭山區城廂片2022-2023學年八年級數學第二學期期末質量檢測模擬試題含解析_第4頁
浙江省杭州市蕭山區城廂片2022-2023學年八年級數學第二學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年八下數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.2.若解關于x的方程時產生增根,那么常數m的值為()A.4 B.3 C.-4 D.-13.如圖,在△ABC中,點E,F分別是邊BC上兩點,ED垂直平分AB,FG垂直平分AC,連接AE,AF,若∠BAC=115°,則∠EAF的大小為()A.45° B.50° C.60° D.65°4.如圖,△ABC中,D,E分別是AB,AC的中點,點F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長為()A.2.5 B.2 C.1.5 D.15.若關于x的分式方程無解,則a的值為()A. B.2 C.或2 D.或﹣26.如圖,?ABCD的周長為32cm,AC,BD相交于點O,OE⊥AC交AD于點E,則△DCE的周長為()A.8cm B.24cm C.10cm D.16cm7.對一組數據:﹣2,1,2,1,下列說法不正確的是()A.平均數是1 B.眾數是1 C.中位數是1 D.極差是48.圖中的兩個三角形是位似圖形,它們的位似中心是()A.點P B.點DC.點M D.點N9.(1)中共有1個小正方體,其中一個看的見,0個看不見;(2)中共有8個小正方體,其中7個看得見,一個看不見;(3)中共有27個小正方體,其中19個看得見,8個看不見;…,則第(5)個圖中,看得見的小正方體有()個.A.100 B.84 C.64 D.6110.下列圖形中,中心對稱圖形有A. B. C. D.11.如圖,將含30°角的直角三角板ABC的直角頂點C放在直尺的一邊上,已知∠A=30°,∠1=40°,則∠2的度數為()A.55° B.60° C.65° D.70°12.如圖,在Rt△ABC中(AB>2BC),∠C=90°,以BC為邊作等腰△BCD,使點D落在△ABC的邊上,則點D的位置有()A.2個 B.3個 C.4個 D.5個二、填空題(每題4分,共24分)13.已知反比例函數的圖像過點、,則__________.14.如圖,△ABC和△BDE都是等邊三角形,A、B、D三點共線.下列結論:①AB=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°,⑤△BFG是等邊三角形.其中正確的有____________(只填序號).15.如圖,在正方形ABCD的外側,作等邊△ADE,則∠EBD=________.16.在平行四邊形ABCD中,O是對角線AC、BD的交點,AC⊥BC,且AB=10㎝,AD=6㎝,則OB=_______________.17.在Rt△ABC中,∠B=90°,∠C=30°,AB=2,則BC的長為______.18.在平面直角坐標系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…,按圖所示的方式放置.點A1、A2、A3,…和點B1、B2、B3,…分別在直線y=kx+b和x軸上.已知C1(1,﹣1),C2(,),則點A3的坐標是_____.三、解答題(共78分)19.(8分)如果一組數據1,2,2,4,的平均數為1.(1)求的值;(2)求這組數據的眾數.20.(8分)小明在數學活動課上,將邊長為和3的兩個正方形放置在直線l上,如圖a,他連接AD、CF,經測量發現AD=CF.(1)他將正方形ODEF繞O點逆時針針旋轉一定的角度,如圖b,試判斷AD與CF還相等嗎?說明理由.(2)他將正方形ODEF繞O點逆時針旋轉,使點E旋轉至直線l上,如圖c,請求出CF的長.21.(8分)如圖,在△ABC中,AD為BC邊上的中線,點E是AD的中點,過點A作AF∥BC交BE的延長線于點F,連接CF.(1)四邊形AFCD是什么特殊的四邊形?請說明理由.(2)填空:①若AB=AC,則四邊形AFCD是_______形.②當△ABC滿足條件______時,四邊形AFCD是正方形.22.(10分)為了預防“甲型H1N1”,某學校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現測得藥物8min燃畢,此時室內空氣每立方米的含藥量為6mg,請你根據題中提供的信息,解答下列問題:(1)藥物燃燒時,求y關于x的函數關系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數關系式呢?(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,學生方可進教室,那么從消毒開始,至少需要幾分鐘后,學生才能進入教室?(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?23.(10分)成都市某超市從生產基地購進200千克水果,每千克進價為2元,運輸過程中質量損失5%,假設不計超市其他費用(1)如果超市在進價的基礎上提高5%作為售價,請你計算說明超市是否虧本;(2)如果該水果的利潤率不得低于14%,那么該水果的售價至少為多少元?24.(10分)如圖,四邊形ABCD中,AD∥BC,AE⊥AD交BD于點E,CF⊥BC交BD于點F,且AE=CF,求證:四邊形ABCD是平行四邊形.25.(12分)如圖,一次函數y=2x+4的圖象與x、y軸分別相交于點A、B,四邊形ABCD是正方形.(1)求點A、B、D的坐標;(2)求直線BD的表達式.26.如圖,在平行四邊形ABCD中,點E,F分別是AB,CD的中點.(1)求證:四邊形AEFD是平行四邊形;(2)若∠DAB=120°,AB=12,AD=6,求△ABC的面積.

參考答案一、選擇題(每題4分,共48分)1、C【解析】

易證△DEF∽△DAB,△BEF∽△BCD,根據相似三角形的性質可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點睛】本題考查了相似三角形的判定及性質定理,熟練掌握性質定理是解題的關鍵.2、D【解析】

方程兩邊同乘,將分式方程化為整式方程,解整式方程,再由增根為2,建立關于m的方程求解即可.【詳解】解得∵原分式方程的增根為2∴∴故選:D【點睛】本題考查分式方程的增根問題,熟練掌握解分式方程,熟記增根的定義建立關于m的方程是解題的關鍵.3、B【解析】

根據三角形內角和定理得到∠B+∠C=65°,根據線段垂直平分線的性質得到EA=EB,FA=FC,根據等腰三角形的性質得到∠EAB=∠B,∠FAC=∠C,結合圖形計算即可.【詳解】解:∵∠BAC=115°,∴∠B+∠C=180°-115°=65°,∵ED垂直平分AB,FG垂直平分AC,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C,∴∠EAB+∠FAC=∠B+∠C=65°,∴∠EAF=∠BAC-(∠EAB+∠FAC)=50°,故選:B.【點睛】本題考查的是線段的垂直平分線的性質、等腰三角形的性質、三角形內角和定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.4、C【解析】

利用三角形中位線定理得到DE=BC.由直角三角形斜邊上的中線等于斜邊的一半得到DF=AB.所以由圖中線段間的和差關系來求線段EF的長度即可.【詳解】解:∵DE是△ABC的中位線,∴DE=BC=1.∵∠AFB=90°,D是AB的中點,∴DF=AB=2.2,∴EF=DE-DF=1-2.2=1.2.故選:C.【點睛】本題考查了三角形的中位線定理的應用,解題的關鍵是了解三角形的中位線平行于第三邊且等于第三邊的一半,題目比較好,難度適中.5、D【解析】

分式方程去分母轉化為整式方程,由分式方程無解確定出a的值即可.【詳解】解:去分母得:2x+2a+ax﹣2a=1,整理得:(a+2)x=1,由分式方程無解,得到a+2=0或x==2,解得:a=﹣2或a=﹣,故選:D.【點睛】此題考查了分式方程的解,始終注意分母不為0這個條件.6、D【解析】

根據平行四邊形性質得出AD=BC,AB=CD,OA=OC,根據線段垂直平分線得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【詳解】∵平行四邊形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=32cm,∴AD+DC=16cm,∴△DCE的周長是:CD+DE+CE=AE+DE+CD=AD+CD=16cm,故選D.【點睛】本題考查了平行四邊形的性質,線段垂直平分線的性質,三角形的周長,熟練掌握相關性質定理是解題的關鍵.7、A【解析】試題分析:A、這組數據的平均數是:(﹣2+1+2+1)÷4=,故原來的說法不正確;B、1出現了2次,出現的次數最多,則眾數是1,故原來的說法正確;C、把這組數據從小到大排列為:﹣2,1,1,2,中位數是1,故原來的說法正確;D、極差是:2﹣(﹣2)=4,故原來的說法正確.故選A.考點:極差,算術平均數,中位數,眾數.8、A【解析】試題分析:根據位似變換的定義:對應點的連線交于一點,交點就是位似中心.即位似中心一定在對應點的連線上.解:∵位似圖形的位似中心位于對應點連線所在的直線上,點M、N為對應點,所以位似中心在M、N所在的直線上,因為點P在直線MN上,所以點P為位似中心.故選A.考點:位似變換.9、D【解析】

根據前3個能看到的小正方體的數量找到規律,利用規律即可解題.【詳解】(1)中共有1個小正方體,其中一個看的見,0個看不見,即;(2)中共有8個小正方體,其中7個看得見,一個看不見,即;(3)中共有27個小正方體,其中19個看得見,8個看不見,即;……第(5)個圖中,看得見的小正方體有即個;故選:D.【點睛】本題主為圖形規律類試題,找到規律是解題的關鍵.10、B【解析】

根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了中心對稱圖形的概念中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.11、D【解析】

根據平行線的性質求出∠3=∠1=40°,根據三角形的外角性質求出∠2=∠3+∠A,代入求出即可.【詳解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故選D.【點睛】本題考查了平行線的性質,三角形外角性質的應用,能求出∠3的度數是解答此題的關鍵,注意:兩直線平行,內錯角相等.12、C【解析】

分情況,BC為腰,BC為底,分別進行判斷得到答案即可【詳解】以BC為腰時,以B為圓心畫圓將會與AB有一個交點、以C為圓心畫圓同樣將會與AB有兩個個交點;以BC為底時,做BC的垂直平分線將會與AB有一個交點,所以BC為邊作等腰三角形在AB上可找到4個點,故選C【點睛】本題主要考查等腰三角形的性質,充分理解基本性質能夠分情況討論是本題關鍵二、填空題(每題4分,共24分)13、【解析】

根據反比例函數的增減性,結合點A和點B的橫坐標的大小,即可得到答案.【詳解】∵m2≥0,∴m2+2>m2+1,∵反比例函數y=,k>0,∴當x>0時,y隨著x的增大而減小,∴y1>y2,故答案為:>.【點睛】本題考查了反比例函數圖象上點的坐標特征,正確掌握反比例函數的增減性是解題的關鍵.14、②③④⑤【解析】

由題中條件可得△ABE≌△CBD,得出對應邊、對應角相等,進而得出△BGD≌△BFE,△ABF≌△CGB,再由邊角關系即可求解題中結論是否正確,進而可得出結論.【詳解】∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∠BDC=∠AEB,又∵∠DBG=∠FBE=60°,∴在△BGD和△BFE中,,∴△BGD≌△BFE(ASA),∴BG=BF,∠BFG=∠BGF=60°,∴△BFG是等邊三角形,∴FG∥AD,在△ABF和△CGB中,,∴△ABF≌△CGB(SAS),∴∠BAF=∠BCG,∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,∴∠AHC=60°,∴②③④⑤都正確.故答案為②③④⑤.【點睛】本題主要考查了等邊三角形的性質及全等三角形的判定及性質問題,能夠熟練掌握.15、30°【解析】分析:判斷△ABE是頂角為150°的等腰三角形,求出∠EBA的度數后即可求解.詳解:因為四邊形ABCD是正方形,所以AB=AD,∠BAD=90°,∠ABD=45°.因為△ADE是等邊三角形,所以AD=AE,∠DAE=60°,所以AB=AE,∠BAE=150°,所以∠EBA=(180°-150°)=15°,所以∠EBD=∠ABD-∠EBA=45°-15°=30°.故答案為30°.點睛:本題考查了正方形和等邊三角形的性質,正方形的四邊都相等,四個角都是直角,每一條對角線平分一組對角.16、4cm【解析】

在?ABCD中∵BC=AD=6cm,AO=CO,∵AC⊥BC,∴∠ACB=90°,∴AC==8cm,∴AO=AC=4cm;故答案為4cm.17、【解析】

由在直角三角形中,30°角所對的邊是斜邊的一半得AC=2AB,再用運用勾股定理,易得BC的值.或直接用三角函數的定義計算.【詳解】解:∵∠B=90°,∠C=30°,AB=2,

∴AC=2AB=4,

由勾股定理得:故答案為:.【點睛】本題考查了解直角三角形,要熟練掌握好邊角之間的關系、勾股定理及三角函數的定義.18、(,)【解析】試題解析:連接A1C1,A2C2,A3C3,分別交x軸于點E、F、G,∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,∴A1與C1關于x軸對稱,A2與C2關于x軸對稱,A3與C3關于x軸對稱,∵C1(1,-1),C2(,),∴A1(1,1),A2(,),∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,將A1與A2的坐標代入y=kx+b中得:,解得:,∴直線解析式為y=x+,設B2G=A3G=t,則有A3坐標為(5+t,t),代入直線解析式得:b=(5+t)+,解得:t=,∴A3坐標為(,).考點:一次函數綜合題.三、解答題(共78分)19、(1);(2)2和4.【解析】

(1)利用平均數的計算公式列出關于x的方程,求出x即可求出答案;(2)根據眾數的定義即可求出答案.【詳解】解:(1)由平均數為1,得,解得:.(2)當時,這組數據是2,2,1,4,4,其中有兩個2,也有兩個4,是出現次數最多的,∴這組數據的眾數是2和4.【點睛】本題考查平均數和眾數,熟練掌握平均數的計算公式和眾數的定義是解決本題的關鍵.在(2)中,一定記住一組數的眾數有可能有幾個.20、(2)詳見解析(2)CF=【解析】

(2)根據正方形的性質可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“邊角邊”證明△AOD和△COF全等,根據全等三角形對應邊相等即可得證.(2)與(2)同理求出CF=AD,連接DF交OE于G,根據正方形的對角線互相垂直平分可得DF⊥OE,DG=OGOE,再求出AG,然后利用勾股定理列式計算即可求出AD.【詳解】解:(2)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,∵AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF.在△AOD和△COF中,∵AO=CO,∠AOD=∠COF,OD=OF,∴△AOD≌△COF(SAS).∴AD=CF.(2)與(2)同理求出CF=AD,如圖,連接DF交OE于G,則DF⊥OE,DG=OG=OE,∵正方形ODEF的邊長為,∴OE=×=2.∴DG=OG=OE=×2=2.∴AG=AO+OG=3+2=4,在Rt△ADG中,,∴CF=AD=.21、(1)平行四邊形,理由見解析;(2)①矩形,②AB=AC,∠BAC=1.【解析】

(1)由“AAS”可證△AEF≌△DEB,可得AF=BD=CD,由平行四邊形的判定可得四邊形AFCD是平行四邊形;

(2)①由等腰三角形的性質可得AD⊥BC,可證平行四邊形AFCD是矩形;

②由等腰直角三角形的性質可得AD=CD=BD,AD⊥BC,可證平行四邊形AFCD是正方形.【詳解】解:(1)平行四邊形理由如下:∵AF∥BC∴∠AFE=∠DBE,在ΔAFE與△DBE中∴ΔAFE≌ΔDBE∴AF=BD,又BD=CD∴AF=CD又AF∥CD∴四邊形AFCD是平行四邊形;(2)①∵AB=AC,AD是BC邊上的中線

∴AD⊥BC,且四邊形AFCD是平行四邊形

∴四邊形AFCD是矩形;

②當△ABC滿足AB=AC,∠BAC=1°條件時,四邊形AFCD是正方形.

理由為:∵AB=AC,∠BAC=1°,AD是BC邊上的中線

∴AD=CD=BD,AD⊥BC

∵四邊形AFCD是平行四邊形,AD⊥BC

∴四邊形AFCD是矩形,且AD=CD

∴四邊形AFCD是正方形.

故答案為:(1)平行四邊形,理由見解析;(2)①矩形,②AB=AC,∠BAC=1.【點睛】本題考查正方形的判定,平行四邊形的判定以及全等三角形的判定與性質、三角形中線的性質等知識點,熟練掌握平行四邊形的判定是解題關鍵.22、(1);(2)至少需要30分鐘后生才能進入教室.(3)這次消毒是有效的.【解析】

(1)藥物燃燒時,設出y與x之間的解析式y=k1x,把點(8,6)代入即可,從圖上讀出x的取值范圍;藥物燃燒后,設出y與x之間的解析式y=,把點(8,6)代入即可;(2)把y=1.6代入反比例函數解析式,求出相應的x;(3)把y=3代入正比例函數解析式和反比例函數解析式,求出相應的x,兩數之差與10進行比較,大于或等于10就有效.【詳解】解:(1)設藥物燃燒時y關于x的函數關系式為y=k1x(k1>0)代入(8,6)為6=8k1∴k1=設藥物燃燒后y關于x的函數關系式為y=(k2>0)代入(8,6)為6=,∴k2=48∴藥物燃燒時y關于x的函數關系式為(0≤x≤8)藥物燃燒后y關于x的函數關系式為(x>8)∴(2)結合實際,令中y≤1.6得x≥30即從消毒開始,至少需要30分鐘后生才能進入教室.(3)把y=3代入,得:x=4把y=3代入,得:x=16∵16﹣4=12所以這次消毒是有效的.【點睛】現實生活中存在大量成反比例函數的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數關系,然后利用待定系數法求出它們的關系式.23、(1)如果超市在進價的基礎上提高5%作為售價,則虧本1元;(2)該水果的售價至少為2.1元/千克.【解析】

(1)根據利潤=銷售收入-成本,即可求出結論;

(2)根據利潤=銷售收入-成本結合該水果的利潤率不得低于11%,即可得出關于x的一元一次不等式,解之取其中的最小值即可得出結論.【詳解】(1)2×(1+5%)×200×(1﹣5%)﹣100=﹣1(元).答:如果超市在進價的基礎上提高5%作為售價,則虧本1元.(2)設該水果的售價為x元/千克,根據題意得:200×(1﹣5%)x﹣200×2≥200×2×11%,解得:x≥2.1.答:該水果的售價至少為2.1元/千克.【點睛】本題考查了一元一次不等式的應用,解題的關鍵是:(1)根據數量關系,列式計算;(2)根據各數量間的關系,正確列出一元一次不等式.24、見解析.【解析】

由垂直得到∠EAD=∠FCB=90°,根據AAS可證明Rt△AED≌Rt△CFB,得到AD=BC,根據平行四邊形的判定判斷即可.【詳解】證明:∵AD//BC∴∠ADE=∠CBF∵AE⊥AD,CF⊥BC.∴∠DAE=∠BCF=90°在△ADE和△CBF中∵∠DAE=∠BCF,∠ADE=∠CBF,AE=CF.∴△ADE≌△CBF(AAS)∴AD=BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論