




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PARTIFUNDAMENTALPRINCIPLES(基本原理)InpartI,wecoversomeofthebasicprinciplesthatapplytoaerodynamicsingeneral.ThesearethepillarsonwhichallofaerodynamicsisbasedChapter1Aerodynamics:SomeIntroductoryThoughtsTheterm“aerodynamics”isgenerallyusedforproblemsarisingfromflightandothertopicsinvolvingtheflowofair.LudwigPrandtl,1949Aerodynamics:Thedynamicsofgases,especiallyofatmosphericinteractionswithmovingobjects.TheAmericanHeritageDictionaryofEnglishLanguage,19691.1ImportanceofAerodynamics:
HistoricalExamplesSeabattlebetweenEnglishfleetandSpanishfleet,Englishchannel,8-8-1588(英國與西班牙海戰(zhàn),英吉利海峽)FirstflightofWrightbrothers,12-27-1903(懷特兄弟首次飛行)MinimizingofaerodynamicheatingofICBMs(洲際彈道導(dǎo)彈氣動熱降低問題)Impetustothestudyoffluidmechnics(流體力學(xué)研究的推動力)1.Newton’ssine-squarelaw2.ExperimentscarriedoutbyD’Alembert3.Euler’sdescriptionoftheflowmodel1.Newton’ssine-squarelawa)Newtonconsideredafluidflowasauniform,rectilinearstreamofparticles,muchlikeacloudofpelletsfromashotgunblast.b)Newtonassumedthatuponstrikingasurfaceinclinedataangletothestream,theparticleswouldtransfertheirnormalmomentumtothesurfacebuttheirtangentialmomentumwouldbepreserved.Hence,aftercollisionwiththesurface,theparticleswouldthenmovealongthesurface.Thisledtoanexpressionforthehydrodynamicsforceonthesurfacewhichvariesas2.D’Alembert
Theexperimentresultsshow:therulethatforobliqueresistancevarieswiththesinesquareoftheangleoftheincidenceholdsgoodonlyforanglebetween50and90degandmustbeabandonedforlesserangles3.Eulernoted
Thefluidmovingtowardabody“beforereachingthelatter,bendsitsdirectionanditsvelocitysothatwhenitreachesthebodyitflowspassitalongthesurface,andexercisenootherforceonthebodyexceptthepressurecorrespondingtothesinglepointsofthecontact.”4.Realcaseforfluidapproachingabody
Allthefluidparticlesareinrandommotion,andhasaaveragevelocity.Duringtheirmotion,theycollidewitheachother.
Themoleculesstrikeontothesolidsurfacewillberebounded,andthesereboundedmoleculeswillmakecollisiontoothermolecules.
Thisprocesstransfersthemessageoftheexistenceofthebody,andmostoftheparticleswillgootherround.Afterthecollisionbetweenfluidparticlesandsolidsurface,the
momentumchangeoftheparticlesisintheperpendiculardirectionofthesurface.FirstflightofWrightbrothersDec.17,1903WilburandOrvilleWright'sWrightFlyerwasthefirstsuccessfulairplane.OnDecember17,1903,atKittyHawk,NorthCarolina,OrvilleWrightflewthefirstheavier-than-airmachineinapowered,controlled,andsustainedflight.TheFlyer,constructedofwood,wire,andmuslin,wentadistanceof120feetin12seconds.Itwasatremendoussuccess,comingfromalongseriesofaeronauticsexperimentsthattheWrightBrothersstartedin1899withakite.Attherearofthe1903WrightFlyeronefindsapairofpusherpropellers.Thepropellersarelong,thin,twistedpiecesofwoodwhicharespunathighspeed.Controlofroll:WINGWARPOverviewofWrightBrothersDiscoveriesAerodynamicheatingofthereentryvehicle
ICBMsreentrytheatmosphereatthespeedsoffrom6to6.7km/s.Theaerodynamicheatingofthereentryvehiclesbecomessevere,thecoverofthewarheadwillbeheatedupto10,000K.Bluntreentrybodydesigncanminimizetheaerodynamicheatingproblem.1.2Aerodynamics:ClassificationandPracticalObjectives
(空氣動力學(xué):分類和應(yīng)用目標)Distinctionofsolids,liquids,andgasesPracticalapplicationsinengineeringSolids,liquids,andgasesinacontainerThesolidobjectwillnotchange:itsshapeandboundarieswillremindthesame.Theliquidwillchangeitsshapetoconformtothatofthecontainerandwilltaketakeonthesameboundariesasthecontaineruptothemaximumdepthoftheliquid.Thegaswillcompletelyfillthecontainer,takingonthesameboundariesasthecontainer.Solidand“fluid”(aliquidoragas)underatangentialforce==deformation固體和流體在受到剪應(yīng)力時,各自形狀所發(fā)生的變化方式截然不同。Underaforceappliedtangentiallytothesurfaceofasolidbody,thesolidbodywillundergoafinitedeformation,andthetangentialforceperunitarea—theshearstress—willusuallybeproportionaltotheamountofdeformation.Ifthecasehappensforafluid,then,thefluidwillexperienceacontinuouslyincreasingdeformationandtheshearstresswillusuallybeproportionaltotherateofthedeformation.Solid:fluid:Shearstress剪應(yīng)力Deformation變形Rateofdeformation變形率Mechanicsdistinctionofsolids,liquids,andgasesDistinctionofsolids,liquids,andgasesrespectstotheintermolecularforcesFluiddynamicsissubdividedintothreeareas:
Hydrodynamics---flowofliquidsGasdynamics---flowofgases
Aerodynamics---flowofairPracticalobjectivesofAerodynamics1.Thepredictionofforcesandmomentsonandheattransferto,bodiesmovingthroughafluid.2.Determinationofflowsmovinginternallythroughducts3.Externalaerodynamics4.Internalaerodynamics1.3RoadMapofthischapterWhat’stheusageoftheroadmapAtthebeginningofeachchapter,roadmapgiveyouthesenseforyougettoknowwhereyouare,whereyouaregoing,andhowcanyougetthereShowtheinterrelationshipofthematerialsinthechapterAttheendofthechapter,afteryoulookbackovertheroadmap,youwillseewhereyoustarted,whereyouarenow,andwhatyoulearnedinbetween.1.4SomefundamentalAerodynamicVariablesAerodynamicvariablesaresomethingliketechnicalvocabularyforthephysicalscienceandengineeringunderstandingFirstintroducedaerodynamicvariables:
pressure,density,temperature,andflowvelocityThevelocitydescriptionofafluidisquitedifferenttothatofasolidbody.VelocityofaflowinggasatanyfixedpointBinspaceisthevelocityofasmallfluidelementasitsweepsthroughB.1.5AerodynamicforcesandmomentsAerodynamicforcesandmomentsonamovingbodyareduetoonlytwobasicsources:1.Pressuredistributionoverthebodysurface2.ShearstressdistributionoverthebodysurfaceBothpressureandshearstresshavedimensionsofforceperunitarea.
pressureactsnormaltothebodysurface.shearstressactstangentialtothesurface.TheneteffectofthepressureandshearstressdistributionresultsinaaerodynamicforceRandmomentMonthebody.TheresultantforceRcanbesplitintocomponentsL=lift:componentofRperpendiculartoD=drag:componentsofRparallelto(windsystem)N=normalforce:componentofRperpendiculartoc
A=axialforce:componentsofRparalleltoc
(bodysystem)Afterthe
pressureandshearstress
distributionsbeingdefined,andthegeometryshapeofthebodybeingknown,theresultantaerodynamicforcecanbeobtainedbytheintegrationofthepressureandshearstress
distributionsalongthesurfaceofthebody.FromEqs.(1.7),(1.8)and(1.11),wecanseeclearly,thatthesourcesoftheaerodynamiclift,drag,andmomentsonabodyarethepressureandshearstressdistributionintegratedoverthebody.Thebasictaskoftheoreticalaerodynamicsistocalculatep(s)andτ(s)foragivenbodyshapeandfreestreamconditions,andthenobtaintheaerodynamicforcesandmomentswiththeuseofEqs.(1.7),(1.8)and(1.11)Dimensionlessaerodynamicforceandmomentcoefficientsareevenmoreimportantthantheaerodynamicforcesandmoments.Definitionofanddensityandvelocityinthefreestream,whichisfaraheadofthebody.Definitionofdynamicpressure
ThedynamicpressurehastheunitofpressureDefinitionofdimensionlessforceandmomentcoefficientsLiftcoefficient:
Dragcoefficient:
Normalforcecoefficient:
Axialforcecoefficient:Momentcoefficient:
:reference
area:reference
length
Definitionofandmaybedifferentfordifferentshapesofthebodybeingconcerned.Thesymbolsincapitalletters,suchasrepresentstheforceandmomentcoefficientsforathree-dimensionalbody.Thesymbolsinlowercaselettersdenotetheforceandmomentcoefficientsforatwo-dimensionalbody
areforceandmomentsperunitspanTwoadditionaldimensionlessquantitiesofimmediateusearePressurecoefficientSkinfrictioncoefficientWhereisthe
freestreampressure1.6Centerofpressure(壓力中心)Thecenterofthepressureisapointonthebodyaboutwhichtheaerodynamicmomentcontributedbythepressureandshearstressdistributionsisequaltozero.Ifisdefinedasthemomentgeneratedbythedistributedloads,andisthecomponentoftheresultantforce,thenthepressurecentermustbelocateddownstreamoftheleadingedgeIftheangleofattackissmall,,thusItiscleartoseethatasliftapproachestozero,thecenterofpressuremovestoinfinity.So,thecenterofpressureisnotalwaysaconvenientconceptinaerodynamics.Thereareotherwaystodefinetheforce-and-momentsystemonanairfoil1.7Dimensionalanalysis:TheBuchinghamPItheorem(量綱分析:PI定理)※Whatphysicalquantitiesdeterminethevariationoftheaerodynamicforcesandmoments?Onaphysical,intuitivebasis,weexpectRisdependon:1.Freestreamvelocity2.Freestreamdensity3.Viscosityofthefluid4.Thesizeofthebody5.Thecompressibilityofthefluid※
Howtofindaprecisefunctionalrelationfortheequationabove?Executehugeamountofwindtunnelexperimentmightbeoneway.Isthereanyotherwaycandomoreeffectively?Methodofdimensionalanalysis※AnobviousfactforthedimensionalanalysisAllthetermsinthisphysicalrelationmusthavethesamedimensions※BuckinghamPItheorem1.LetKtobethenumberoffundamentaldimensionsrequiredtodescribethephysicalvariables2.LetrepresentNphysicalvariablesinthephysicalrelation3.Thenthephysicalrelationcanbereexpressedasarelationof(N-K)dimensionlessproducts.4.EveryproductisadimensionlessproductofasetofK
physicalvariablesplusoneotherphysicalvariable.5.iscalledrepeatingvariables.Thesevariablesshouldincludeall
theKdimensionsusedintheproblem.※Aerodynamicforceonagivenbodyatagivenangleofattack.1.Eq.(1.23)canbeexpressedas2.FollowingBuckinghamtheoremandourphysicalintuition,thefundamentaldimensionsarem,landt.Hence,
K=33.Thephysicalvariablesandtheirdimensionsareand
N=64.AsexplainedbyBuckinghamtheorem,Eq.(1.27)canbereexpressedintermsofN-K=3
dimensionlessproducts,thatis5.Now,wechoseasrepeatingvariables,fromEq.(1.26),theseproductsare5.Assume
indimensionalform6.Asisdimensionless,then7.TheaboveEquationsgived=-1,b=-2,ande=-2,thenwehaveor
whereS
isdefinedasreferencearea8.Inthesameway,wecanobtaintheremainingproductsasfollowsReynoldsNumber雷諾數(shù)
isaforcecoefficient,definedasMachNumber馬赫數(shù)9.InsertingalltheproductsintoEq.(1.28)
oror10.Importantconclusion:Inthegeneralfunctionform,RisexpressedwithfiveindependentphysicalvariablesAfterourdimensionalanalysis,Rcanbeexpressedwithonly
twoindependentvariables
RcanbeexpressedintermsofadimensionlessforcecoefficientisafunctionofonlyReand11.ImportantapplicationsofReand.
similarityparameters
12.Asliftanddragarecomponentsoftheresultantforce,thentheliftanddragcoefficientsarealsofunctionsofonlyRe
and.Moreover,arelationsimilartoaerodynamicforcesholdsforaerodynamicmoments,anddimensionanalysisyields13.Iftheangleofattackisallowedtovary,then,thelift,dragandmomentcoefficientswillingeneraldependonthevalueof.14.Othersimilarityparametersassociatedwiththermodynamicsandheattransfer.Physicalvariablesshouldbeaddedtemperature,specificheat,thermalconductivity,temperatureofthebodysurfaceFundamentaldimensionshouldbeaddedunitofthetemperature(K)Similarityparameterscreated1.8Flowsimilarity(流動相似)※DefinitionofflowsimilarityDifferentflowsaredynamicallysimilarif:Thestreamlinepatternsaregeometricallysimilar2.Thedistributionsofetc.,throughouttheflowfieldarethesamewhenplottedagainstcommonnondimensionalcoordinates.3.Theforcecoefficientsarethesame※CriteriatoensureflowsimilarityThebodiesandanyothersolidboundariesaregeometricallysimilarforbothflows.2.Thesimilarityparametersareidenticalforbothflows.3.ReynoldsandMachnumberarethemostdominantsimilarityparametersformanyaerodynamicproblems.※Examples1.4and1.51.9FluidStatics:BuoyancyForce
(流體靜力學(xué):浮力)Skippedover1.10TypesofFlow(流動類型)1.Thepurposeforcategorizingdifferenttypesofflow.2.Thestrategytosimplifytheflowproblems.3.Itemizationandcomparisonofdifferenttypesofflow,andbriefdescriptionoftheirmostimportantphysicalphenomena.1.10.1Continuumversusfreemoleculeflow1.Definitionofmean-free
path.2.Continuumflow.3.Freemoleculeflow4.Inmostaerodynamicproblems,wewillalwaystreatthefluidascontinuumflow.1.10.2Inviscidversusviscousflow1.Therandommotionofthemoleculewilltransporttheirmass,momentum,andenergyfromonelocationtoanotherinthefluid.Thistransportonamoleculescalegivesrisetothephenomenaofmassdiffusion,viscosity,andthermalconduction.Allrealflowsexhibittheeffectofthesetransportphenomena;suchflowsarecallviscousflows.2.Aflowthatisassumedfreewithallthesephenomenaaboveiscalledinviscidflow.3.InviscidflowisapproachedinthelimitastheReynoldsnumbergoestoinfinity.4.TheflowwithhighReynoldsnumber,canbeassumedtobeinviscid.Andtheinfluenceof
friction,thermalconduction,anddiffusionislimitedintheboundarylayer.5.Theinviscidtheorycanbeusedtopredictsthepressuredistributionandlift.However,itcannotpredictstotaldrag.6.Flowsdominatedbyviscouseffects.
FlowaroundairfoilathighangleofattackFlowaroundbluntbody7.Noinviscidtheorycanindependentlypredicttheaerodynamicsofsuchflows.
1.10.3IncompressibleversuscompressibleFlowsAflowinwhichthedensityisconstantiscalledincompressible.Incontrast,aflowwherethedensityisvariableiscalledcompressible.
2.Alltheflowsarecompressible,moreorless3.Thereareanumberofaerodynamicproblemsthatcanbemodeled
asbeingincompressible
withoutanydetrimentallossofaccuracy.4.Inmanycases,whetherthecompressibilityshouldbeconsideredornot,ismanlybasedon
theMachnumberoftheflow.1.10.4MachnumberregimesLocaldefinitionSubsonicifSonicif
Supersonicif
WhereisthelocalMachnumberatanarbitrarypointinaflowfield.2.Definitionforwholeflowfield3.Blockdiagramcategorizingthetypesofaerodynamicflows1.11Appliedaerodynamics:Theaerodynamiccoefficients—TheirmagnitudeandvariationsDifferencebetweenthefundamentals
andapplicationsofaerodynamics.
2.Aerodynamiccoefficients,suchaslift,drag,andmomentcoefficients,aretheprimarylanguageofapplicationexternalaerodynamics.3.Typicalvaluesfortheaerodynamiccoefficientsforsomecommonaerodynamicshapesandit’svariationwithMachnumberandReynoldsnumber.4.Sometypicaldragcoefficientsforvariousaerodynamicconfigurationsinlowspeedflows.
Comparisonthroughcaseatoc:
theReynoldsnumbersforallthesethreecasesarethesamebasedond(diameter).thewakesaregettingsmallerinsizefromatoc
alsobecomessmallerfromcase
atoc
Comparisonbetweencasebandd:
theReynoldsnumberincaseb:theReynoldsnumberincased
:isthesameforcasebtod
foracircularcylinderisrelativelyindependentofReynoldsnumberbetweenRe=andComparisonbetweencasebtoe:
theReynoldsnumberincaseb:theReynoldsnumberincasee:incaseeis0.6
smallerwakebehindthecylinderincasee
comparedtothatincase
b.Note:Withbasedonthefrontalprojectedarea(S=d(1)perunitspan),thevalueofrangefromamaximum2tonumbersaslowas0.12.MagnitudeofReynoldsnumberofaflowaroundacircularcylinderatstandardsealevel,where,
Th
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2216-2025電磁流量計在線校準規(guī)范
- 頂管施工合同(知識研究版本)
- 湖南省益陽市名校2025年初三考試生物試題分類匯編含解析
- 河北省石家莊市藁城區(qū)實驗學(xué)校2025年三年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
- 洛陽科技職業(yè)學(xué)院《智慧供應(yīng)鏈管理實訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東交通職業(yè)學(xué)院《生物化學(xué)雙語》2023-2024學(xué)年第二學(xué)期期末試卷
- 江海職業(yè)技術(shù)學(xué)院《文學(xué)概論2》2023-2024學(xué)年第一學(xué)期期末試卷
- 民辦合肥經(jīng)濟技術(shù)職業(yè)學(xué)院《工程項目認知實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 南京財經(jīng)大學(xué)紅山學(xué)院《幾何學(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘭州現(xiàn)代職業(yè)學(xué)院《施工技術(shù)與組織設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 反有組織犯罪法課件
- 動作經(jīng)濟原則課件
- 《學(xué)弈》說課稿公開課一等獎省優(yōu)質(zhì)課大賽獲獎?wù)n件
- 幼兒園繪本故事:《鼴鼠的皮鞋車》 課件
- 工程概算表【模板】
- 《過程檢測技術(shù)及儀表》實驗指導(dǎo)書
- 信用修復(fù)申請書
- 舊廠房拆除施工組織方案
- 全合成水溶性線切割液配方
- DB14∕T 2447-2022 建設(shè)項目環(huán)境影響后評價技術(shù)導(dǎo)則 生態(tài)影響類
- 冶金等工貿(mào)企業(yè)安全生產(chǎn)標準化達標信息管理系統(tǒng)[冶金等工貿(mào)企業(yè)安全生產(chǎn)標準化達標信息管理系統(tǒng)](-33)
評論
0/150
提交評論