安徽省濱湖壽春中學2023年高考數學全真模擬密押卷含解析_第1頁
安徽省濱湖壽春中學2023年高考數學全真模擬密押卷含解析_第2頁
安徽省濱湖壽春中學2023年高考數學全真模擬密押卷含解析_第3頁
安徽省濱湖壽春中學2023年高考數學全真模擬密押卷含解析_第4頁
安徽省濱湖壽春中學2023年高考數學全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知α,β表示兩個不同的平面,l為α內的一條直線,則“α∥β是“l∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.已知函數,其中表示不超過的最大正整數,則下列結論正確的是()A.的值域是 B.是奇函數C.是周期函數 D.是增函數3.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數恰好為5的概率是()A. B. C. D.4.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數的取值為A.或11 B.或11 C. D.5.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形6.在等差數列中,若為前項和,,則的值是()A.156 B.124 C.136 D.1807.設是虛數單位,復數()A. B. C. D.8.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.9.已知實數,,函數在上單調遞增,則實數的取值范圍是()A. B. C. D.10.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.11.函數(其中,,)的圖象如圖,則此函數表達式為()A. B.C. D.12.記單調遞增的等比數列的前項和為,若,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若在上單調遞減,則的取值范圍是_______14.在的二項展開式中,只有第5項的二項式系數最大,則該二項展開式中的常數項等于_____.15.如圖,橢圓:的離心率為,F是的右焦點,點P是上第一角限內任意一點,,,若,則的取值范圍是_______.16.邊長為2的正方形經裁剪后留下如圖所示的實線圍成的部分,將所留部分折成一個正四棱錐.當該棱錐的體積取得最大值時,其底面棱長為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的極坐標為,直線與曲線的交點為,求的值.18.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.19.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45°的直線,交于點,且的最大值為,求的值.20.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.21.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內角,,所對的邊分別為,,,三邊,,與面積滿足關系式:,且,求的面積的值(或最大值).22.(10分)在極坐標系中,直線的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數方程為(為參數),求直線與曲線的交點的直角坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】試題分析:利用面面平行和線面平行的定義和性質,結合充分條件和必要條件的定義進行判斷.解:根據題意,由于α,β表示兩個不同的平面,l為α內的一條直線,由于“α∥β,則根據面面平行的性質定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結論,反之不成立,∴“α∥β是“l∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.2、C【解析】

根據表示不超過的最大正整數,可構建函數圖象,即可分別判斷值域、奇偶性、周期性、單調性,進而下結論.【詳解】由表示不超過的最大正整數,其函數圖象為選項A,函數,故錯誤;選項B,函數為非奇非偶函數,故錯誤;選項C,函數是以1為周期的周期函數,故正確;選項D,函數在區間上是增函數,但在整個定義域范圍上不具備單調性,故錯誤.故選:C【點睛】本題考查對題干的理解,屬于函數新定義問題,可作出圖象分析性質,屬于較難題.3、B【解析】

由題意,取的3個球的編號的中位數恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應用,考查了學生綜合分析,概念理解,數學運算的能力,屬于中檔題.4、A【解析】

圓的圓心坐標為(1,1),該圓心到直線的距離,結合弦長公式得,解得或,故選A.5、D【解析】

A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.6、A【解析】

因為,可得,根據等差數列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數列前項和,解題關鍵是掌握等差中項定義和等差數列前項和公式,考查了分析能力和計算能力,屬于基礎題.7、D【解析】

利用復數的除法運算,化簡復數,即可求解,得到答案.【詳解】由題意,復數,故選D.【點睛】本題主要考查了復數的除法運算,其中解答中熟記復數的除法運算法則是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.8、B【解析】

連接、,即可得到,,再根據平面向量的數量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數量積及其運算律的應用,屬于基礎題.9、D【解析】

根據題意,對于函數分2段分析:當,由指數函數的性質分析可得①,當,由導數與函數單調性的關系可得,在上恒成立,變形可得②,再結合函數的單調性,分析可得③,聯立三個式子,分析可得答案.【詳解】解:根據題意,函數在上單調遞增,

當,若為增函數,則①,

當,若為增函數,必有在上恒成立,

變形可得:,

又由,可得在上單調遞減,則,

若在上恒成立,則有②,

若函數在上單調遞增,左邊一段函數的最大值不能大于右邊一段函數的最小值,則需有,③

聯立①②③可得:.

故選:D.【點睛】本題考查函數單調性的性質以及應用,注意分段函數單調性的性質.10、B【解析】

求得直線的方程,聯立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.11、B【解析】

由圖象的頂點坐標求出,由周期求出,通過圖象經過點,求出,從而得出函數解析式.【詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數表達式為.故選:B.【點睛】本題主要考查三角函數圖象及性質,三角函數的解析式等基礎知識;考查考生的化歸與轉化思想,數形結合思想,屬于基礎題.12、C【解析】

先利用等比數列的性質得到的值,再根據的方程組可得的值,從而得到數列的公比,進而得到數列的通項和前項和,根據后兩個公式可得正確的選項.【詳解】因為為等比數列,所以,故即,由可得或,因為為遞增數列,故符合.此時,所以或(舍,因為為遞增數列).故,.故選C.【點睛】一般地,如果為等比數列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數且;(3)為等比數列()且公比為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得導數在恒成立,解出即可.【詳解】解:由題意,,當時,顯然,符合題意;當時,在恒成立,∴,∴,故答案為:.【點睛】本題主要考查利用導數研究函數的單調性,屬于中檔題.14、1【解析】

由題意可得,再利用二項展開式的通項公式,求得二項展開式常數項的值.【詳解】的二項展開式的中,只有第5項的二項式系數最大,,通項公式為,令,求得,可得二項展開式常數項等于,故答案為1.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.15、【解析】

由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設,又由,可知,從而可得,而點在橢圓上,所以將點的坐標代入橢圓方程中化簡可得結果.【詳解】設,,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【點睛】此題考查的是利用橢圓中相關兩個點的關系求離心率,綜合性強,屬于難題.16、【解析】

根據題意,建立棱錐體積的函數,利用導數求函數的最大值即可.【詳解】設底面邊長為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數在時取得最大值.故此時底面棱長.故答案為:.【點睛】本題考查棱錐體積的求解,涉及利用導數研究體積最大值的問題,屬綜合中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由公式可化極坐標方程為直角坐標方程;(2)把點極坐標化為直角坐標,直線的參數方程是過定點的標準形式,因此直接把參數方程代入曲線的方程,利用參數的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標方程為,即(2)點的直角坐標為,易知.設對應參數分別為將與聯立得【點睛】本題考查極坐標方程與直角坐標方程的互化,考查直線參數方程,解題時可利用利用參數方程的幾何意義求直線上兩點間距離問題.18、(1);(2)4.【解析】

(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進而求得,利用同角三角函數的基本關系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數的基本關系式,屬于中檔題.19、(1),;(2)或【解析】

(1)將曲線的極坐標方程和直線的參數方程化為直角坐標方程,聯立方程,即可求得曲線與的交點坐標;(2)由直線的普通方程為,故上任意一點,根據點到直線距離公式求得到直線的距離,根據三角函數的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標方程為.當時,直線的普通方程為由解得或.從而與的交點坐標為,.(2)由題意知直線的普通方程為,的參數方程為(為參數)故上任意一點到的距離為則.當時,的最大值為所以;當時,的最大值為,所以.綜上所述,或【點睛】解題關鍵是掌握極坐標和參數方程化為直角坐標方程的方法,和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.20、.【解析】試題分析:,所以.試題解析:B.因為,所以.21、見解析【解析】

若選擇①,結合三角形的面積公式,得,化簡得到,則,又,從而得到,將代入,得.又,∴,當且僅當時等號成立.∴,故的面積的最大值為,此時.若選擇②,,結合三角形的面積公式,得,化簡得到,則,又,從而得到,則,此時為等腰直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論