2023屆四川省仁壽一中高三最后一卷數學試卷含解析_第1頁
2023屆四川省仁壽一中高三最后一卷數學試卷含解析_第2頁
2023屆四川省仁壽一中高三最后一卷數學試卷含解析_第3頁
2023屆四川省仁壽一中高三最后一卷數學試卷含解析_第4頁
2023屆四川省仁壽一中高三最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.2.執行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.3.已知函數,將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數的圖象,若,則的值可能為()A. B. C. D.4.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.605.某醫院擬派2名內科醫生、3名外科醫生和3名護士共8人組成兩個醫療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫生、外科醫生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種6.在條件下,目標函數的最大值為40,則的最小值是()A. B. C. D.27.已知為銳角,且,則等于()A. B. C. D.8.是虛數單位,復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知集合,,則()A. B.C. D.10.已知,則()A.5 B. C.13 D.11.等比數列中,,則與的等比中項是()A.±4 B.4 C. D.12.如圖是甲、乙兩位同學在六次數學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數和乙相等二、填空題:本題共4小題,每小題5分,共20分。13.已知實數滿約束條件,則的最大值為___________.14.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.15.已知數列的前項和為且滿足,則數列的通項_______.16.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.18.(12分)選修4-5:不等式選講已知函數的最大值為3,其中.(1)求的值;(2)若,,,求證:19.(12分)如圖,已知拋物線:與圓:()相交于,,,四個點,(1)求的取值范圍;(2)設四邊形的面積為,當最大時,求直線與直線的交點的坐標.20.(12分)已知函數(1)解不等式;(2)若函數,若對于任意的,都存在,使得成立,求實數的取值范圍.21.(12分)已知動圓Q經過定點,且與定直線相切(其中a為常數,且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.22.(10分)為調研高中生的作文水平.在某市普通高中的某次聯考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規定分數在50以上(含50)的作文被評為“優秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.(1)求的值;(2)填寫下面列聯表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優秀作文”與“學生的文理科”有關?文科生理科生合計獲獎6不獲獎合計400(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優秀作文”的學生人數為,求的分布列及數學期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結合的面積求得的值,結合焦點弦長公式可求得.【詳解】設點、,并設直線的方程為,將直線的方程與拋物線方程聯立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.2、B【解析】

根據程序框圖,逐步執行,直到的值為63,結束循環,即可得出判斷條件.【詳解】執行框圖如下:初始值:,第一步:,此時不能輸出,繼續循環;第二步:,此時不能輸出,繼續循環;第三步:,此時不能輸出,繼續循環;第四步:,此時不能輸出,繼續循環;第五步:,此時不能輸出,繼續循環;第六步:,此時要輸出,結束循環;故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執行框圖,結合輸出結果,即可確定判斷條件,屬于常考題型.3、C【解析】

利用二倍角公式與輔助角公式將函數的解析式化簡,然后利用圖象變換規律得出函數的解析式為,可得函數的值域為,結合條件,可得出、均為函數的最大值,于是得出為函數最小正周期的整數倍,由此可得出正確選項.【詳解】函數,將函數的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數的圖象,易知函數的值域為.若,則且,均為函數的最大值,由,解得;其中、是三角函數最高點的橫坐標,的值為函數的最小正周期的整數倍,且.故選C.【點睛】本題考查三角函數圖象變換,同時也考查了正弦型函數與周期相關的問題,解題的關鍵在于確定、均為函數的最大值,考查分析問題和解決問題的能力,屬于中等題.4、D【解析】

先設A點的坐標為,根據對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數形結合思想,以及化歸與轉化思想的應用.5、B【解析】

根據條件2名內科醫生,每個村一名,3名外科醫生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫生,每個村一名,有2種方法,3名外科醫生和3名護士,平均分成兩組,要求外科醫生和護士都有,則分1名外科,2名護士和2名外科醫生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于常考題型.6、B【解析】

畫出可行域和目標函數,根據平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數,根據圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【點睛】本題考查了線性規劃中根據最值求參數,均值不等式,意在考查學生的綜合應用能力.7、C【解析】

由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數式化簡求值公式的靈活運用的能力,屬于基礎題.8、D【解析】

求出復數在復平面內對應的點的坐標,即可得出結論.【詳解】復數在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復數對應的點的位置的判斷,屬于基礎題.9、A【解析】

根據對數性質可知,再根據集合的交集運算即可求解.【詳解】∵,集合,∴由交集運算可得.故選:A.【點睛】本題考查由對數的性質比較大小,集合交集的簡單運算,屬于基礎題.10、C【解析】

先化簡復數,再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數的運算,是基礎題.11、A【解析】

利用等比數列的性質可得,即可得出.【詳解】設與的等比中項是.

由等比數列的性質可得,.

∴與的等比中項

故選A.【點睛】本題考查了等比中項的求法,屬于基礎題.12、B【解析】

由平均數、方差公式和極差、中位數概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數為,乙得分的中位數為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數和方差等概念,培養計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】

畫出可行域和目標函數,根據平移計算得到答案.【詳解】根據約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數表示直線在軸上的截距,由圖可知當經過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.14、【解析】

根據題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據題意畫出幾何圖形,以為原點建立空間直角坐標系:設正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.15、【解析】

先求得時;再由可得時,兩式作差可得,進而求解.【詳解】當時,,解得;由,可知當時,,兩式相減,得,即,所以數列是首項為,公比為的等比數列,所以,故答案為:【點睛】本題考查由與的關系求通項公式,考查等比數列的通項公式的應用.16、2【解析】

由題得,再根據求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.【點睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用正弦定理的邊化角公式,結合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,根據三角形面積公式,即可得出結論.【詳解】(1)由正弦定理得即即在中,,所以(2)因為點是線段的中點,所以兩邊平方得由得整理得,解得或(舍)所以的面積【點睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.18、(1)(2)見解析【解析】

(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉化為2ab≥1,再構造函數利用導數判斷單調性求出最小值可證.【詳解】(1)∵,∴.∴當時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當且僅當時等號成立,∴.令,.則在上單調遞減.∴.∴當時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據絕對值的定義,合理去掉絕對值號,及合理轉化恒成立問題是解答本題的關鍵,著重考查分析問題和解答問題的能力,以及轉化思想的應用.19、(1)(2)點的坐標為【解析】

將拋物線方程與圓方程聯立,消去得到關于的一元二次方程,拋物線與圓有四個交點需滿足關于的一元二次方程在上有兩個不等的實數根,根據二次函數的有關性質即可得到關于的不等式組,解不等式即可.不妨設拋物線與圓的四個交點坐標為,,,,據此可表示出直線、的方程,聯立方程即可表示出點坐標,再根據等腰梯形的面積公式可得四邊形的面積的表達式,令,由及知,對關于的面積函數進行求導,判斷其單調性和最值,即可求出四邊形的面積取得最大值時的值,進而求出點坐標.【詳解】(1)聯立拋物線與圓的方程消去,得.由題意可知在上有兩個不等的實數根.所以解得,所以的取值范圍為.(2)根據(1)可設方程的兩個根分別為,(),則,,,,且,,所以直線、的方程分別為,,聯立方程可得,點的坐標為,因為四邊形為等腰梯形,所以,令,則,所以,因為,所以當時,;當時,,所以函數在上單調遞增,在上單調遞減,即當時,四邊形的面積取得最大值,因為,點的坐標為,所以當四邊形的面積取得最大值時,點的坐標為.【點睛】本題考查利用導數求函數的極值與最值、拋物線及其標準方程及直線與圓錐曲線相關的最值問題;考查運算求解能力、轉化與化歸能力和知識的綜合運用能力;利用函數的思想求圓錐曲線中面積的最值是求解本題的關鍵;屬于綜合型強、難度大型試題.20、(1)(2)【解析】

(1)將表示為分段函數的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據分段函數解析式,求得的取值范圍,結合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點睛】本小題考查了絕對值不等式,絕對值三角不等式和函數最值問題,考查運算求解能力,推理論證能力,化歸與轉化思想.21、(1),拋物線;(2)存在,.【解析】

(1)設,易得,化簡即得;(2)利用導數幾何意義可得,要使,只需.聯立直線m與拋物線方程,利用根與系數的關系即可解決.【詳解】(1)設,由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論