2023屆黑龍江省哈爾濱市尚志市中考數學模試卷含解析_第1頁
2023屆黑龍江省哈爾濱市尚志市中考數學模試卷含解析_第2頁
2023屆黑龍江省哈爾濱市尚志市中考數學模試卷含解析_第3頁
2023屆黑龍江省哈爾濱市尚志市中考數學模試卷含解析_第4頁
2023屆黑龍江省哈爾濱市尚志市中考數學模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,EF∥BC,AB=3AE,若S四邊形BCFE=16,則S△ABC=()A.16 B.18 C.20 D.242.“車輛隨機到達一個路口,遇到紅燈”這個事件是()A.不可能事件 B.不確定事件 C.確定事件 D.必然事件3.方程x2﹣kx+1=0有兩個相等的實數根,則k的值是()A.2 B.﹣2 C.±2 D.04.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發,繞圓錐側面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側面剪開并展開,所得側面展開圖是()A. B.C. D.5.下列運算正確的是()A.2a2+3a2=5a4 B.(﹣)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab6.如圖,函數y=kx+b(k≠0)與y=(m≠0)的圖象交于點A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.7.在娛樂節目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢,才能穿墻而過,否則會被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個不同形狀的“姿勢”分別穿過這兩個空洞,則該幾何體為()A. B. C. D.8.等腰三角形的一個外角是100°,則它的頂角的度數為()A.80° B.80°或50° C.20° D.80°或20°9.下列事件中,屬于不確定事件的是()A.科學實驗,前100次實驗都失敗了,第101次實驗會成功B.投擲一枚骰子,朝上面出現的點數是7點C.太陽從西邊升起來了D.用長度分別是3cm,4cm,5cm的細木條首尾順次相連可組成一個直角三角形10.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.125二、填空題(共7小題,每小題3分,滿分21分)11.若,,則代數式的值為__________.12.因式分解a3-6a2+9a=_____.13.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內的地面寬度為,兩側離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)14.如圖所示的網格是正方形網格,點P到射線OA的距離為m,點P到射線OB的距離為n,則m__________n.(填“>”,“=”或“<”)15.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠BAD=60°,則∠ACD=_____°.16.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉得到矩形GBEF,點A落在矩形ABCD的邊CD上,連接CE,則CE的長是________.17.如圖,若雙曲線()與邊長為3的等邊△AOB(O為坐標原點)的邊OA、AB分別交于C、D兩點,且OC=2BD,則k的值為_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當與滿足什么關系時,四邊形是正方形?請說明理由.19.(5分)如圖,在△ABC中,∠ACB=90°,點O是BC上一點.尺規作圖:作⊙O,使⊙O與AC、AB都相切.(不寫作法與證明,保留作圖痕跡)若⊙O與AB相切于點D,與BC的另一個交點為點E,連接CD、DE,求證:DB20.(8分)如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.(1)求⊙O的半徑長;(2)求線段DG的長.21.(10分)如圖,河的兩岸MN與PQ相互平行,點A,B是PQ上的兩點,C是MN上的點,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,測得∠CBQ=60°,求這條河的寬是多少米?(結果精確到0.1米,參考數據≈1.414,≈1.732)22.(10分)如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數.小明發現OE平分∠BOC,請你通過計算說明道理.23.(12分)已知,關于x的一元二次方程(k﹣1)x2+x+3=0有實數根,求k的取值范圍.24.(14分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】【分析】由EF∥BC,可證明△AEF∽△ABC,利用相似三角形的性質即可求出S△ABC的值.【詳解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,設S△AEF=x,∵S四邊形BCFE=16,∴,解得:x=2,∴S△ABC=18,故選B.【點睛】本題考查了相似三角形的判定與性質,熟練掌握相似三角形的面積比等于相似比的平方是解本題的關鍵.2、B【解析】

根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】“車輛隨機到達一個路口,遇到紅燈”是隨機事件.故選:.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的實際;不可能事件是指在一定條件下,一定不發生的事件;不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.3、C【解析】

根據已知得出△=(﹣k)2﹣4×1×1=0,解關于k的方程即可得.【詳解】∵方程x2﹣kx+1=0有兩個相等的實數根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故選C.【點睛】本題考查了根的判別式的應用,注意:一元二次方程ax2+bx+c=0(a、b、c為常數,a≠0),當b2﹣4ac>0時,方程有兩個不相等的實數根;當b2﹣4ac=0時,方程有兩個相等的實數根;當b2﹣4ac<0時,方程無實數根.4、D【解析】

此題運用圓錐的性質,同時此題為數學知識的應用,由題意蝸牛從P點出發,繞圓錐側面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【詳解】解:蝸牛繞圓錐側面爬行的最短路線應該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發,繞圓錐側面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側面展開圖還原成圓錐后,位于母線OM上的點P應該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學生的空間想象能力.5、B【解析】

根據合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則對各選項依次進行判斷即可解答.【詳解】A.2a2+3a2=5a2,故本選項錯誤;B.(?)-2=4,正確;C.(a+b)(?a?b)=?a2?2ab?b2,故本選項錯誤;D.8ab÷4ab=2,故本選項錯誤.故答案選B.【點睛】本題考查了合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則,解題的關鍵是熟練的掌握合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則.6、B【解析】

根據函數的圖象和交點坐標即可求得結果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,

故選B.【點睛】此題考查反比例函數與一次函數的交點問題,解題關鍵是注意掌握數形結合思想的應用.7、C【解析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C8、D【解析】

根據鄰補角的定義求出與外角相鄰的內角,再根據等腰三角形的性質分情況解答.【詳解】∵等腰三角形的一個外角是100°,∴與這個外角相鄰的內角為180°?100°=80°,當80°為底角時,頂角為180°-160°=20°,∴該等腰三角形的頂角是80°或20°.故答案選:D.【點睛】本題考查了等腰三角形的性質,解題的關鍵是熟練的掌握等腰三角形的性質.9、A【解析】

根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】解:A、是隨機事件,故A符合題意;B、是不可能事件,故B不符合題意;C、是不可能事件,故C不符合題意;D、是必然事件,故D不符合題意;故選A.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.10、B【解析】

根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.二、填空題(共7小題,每小題3分,滿分21分)11、-12【解析】分析:對所求代數式進行因式分解,把,,代入即可求解.詳解:,,,故答案為:點睛:考查代數式的求值,掌握提取公因式法和公式法進行因式分解是解題的關鍵.12、a(a-3)2【解析】

根據因式分解的方法與步驟,先提取公因式,再根據完全平方公式分解即可.【詳解】解:故答案為:.【點睛】本題考查因式分解的方法與步驟,熟練掌握方法與步驟是解答關鍵.13、9.1【解析】

建立直角坐標系,得到二次函數,門洞高度即為二次函數的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點睛】本題考查二次函數的簡單應用,能夠建立直角坐標系解出二次函數解析式是本題關鍵14、>【解析】

由圖像可知在射線OP上有一個特殊點Q,點Q到射線OA的距離QD=2,點Q到射線OB的距離QC=1,于是可知∠AOP>∠BOP,利用銳角三角函數sin∠AOP>【詳解】由題意可知:找到特殊點Q,如圖所示:設點Q到射線OA的距離QD,點Q到射線OB的距離QC由圖可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n【點睛】本題考查了點到線的距離,熟知在直角三角形中利用三角函數來解角和邊的關系是解題關鍵.15、1【解析】

連接BD.根據圓周角定理可得.【詳解】解:如圖,連接BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案為1.【點睛】考核知識點:圓周角定理.理解定義是關鍵.16、【解析】

解:連接AG,由旋轉變換的性質可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【點睛】本題考查的是旋轉變換的性質、相似三角形的判定和性質,掌握勾股定理、矩形的性質、旋轉變換的性質是解題的關鍵.17、.【解析】

過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,設OC=2x,則BD=x,在Rt△OCE中,∠COE=60°,則OE=x,CE=,則點C坐標為(x,),在Rt△BDF中,BD=x,∠DBF=60°,則BF=,DF=,則點D的坐標為(,),將點C的坐標代入反比例函數解析式可得:,將點D的坐標代入反比例函數解析式可得:,則,解得:,(舍去),故=.故答案為.考點:1.反比例函數圖象上點的坐標特征;2.等邊三角形的性質.三、解答題(共7小題,滿分69分)18、見解析【解析】

(1)由菱形的性質得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;

(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【點睛】本題考查了全等三角形、菱形、正方形的性質,解題的關鍵是熟練的掌握菱形、正方形、全等三角形的性質.19、(1)詳見解析;(2)詳見解析.【解析】

(1)利用角平分線的性質作出∠BAC的角平分線,利用角平分線上的點到角的兩邊距離相等得出O點位置,進而得出答案.(2)根據切線的性質,圓周角的性質,由相似判定可證△CDB∽△DEB,再根據相似三角形的性質即可求解.【詳解】解:(1)如圖,⊙O及為所求.(2)連接OD.∵AB是⊙O的切線,∴OD⊥AB,∴∠ODB=90°,即∠1+∠2=90°,∵CE是直徑,∴∠3+∠2=90°,∴∠1=∠3,∵OC=OD,∴∠4=∠3,∴∠1=∠4,又∠B=∠B∴△CDB∽△DEB∴DB∴DB【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作是解決此類題目的關鍵.20、(1)1;(2)【解析】(1)由勾股定理求AB,設⊙O的半徑為r,則r=(AC+BC-AB)求解;(2)過G作GP⊥AC,垂足為P,根據CG平分直角∠ACB可知△PCG為等腰直角三角形,設PG=PC=x,則CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.試題解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半徑r=(AC+BC-AB)=(4+3-5)=1;(2)過G作GP⊥AC,垂足為P,設GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.21、17.3米.【解析】分析:過點C作于D,根據,得到,在中,解三角形即可得到河的寬度.詳解:過點C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:這條河的寬是米.點睛:考查解直角三角形的應用,作出輔助線,構造直角三角形是解題的關鍵.22、(1)答案見解析(2)155°(3)答案見解析【解析】

(1)根據角的定義即可解決;(2)根據∠BOD=∠DOC+∠BOC,首先利用角平分線的定義和鄰補角的定義求得∠DOC和∠BOC即可;(3)根據∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分別求得∠COE與∠BOE的度數即可說明.【詳解】(1)圖中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因為∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因為∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因為∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【點睛】本題考查了角的度數的計算,正確理解角平分線的定義,以及鄰補角的定義是解題的關鍵.23、0≤k≤且k≠1.【解析】

根據二次項系數非零、被開方數非負及根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可求出k的取值范圍.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+x+3=0有實數根,∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,解得:0≤k≤且k≠1.∴k的取值范圍為0≤k≤且k≠1.【點睛】本題考查了根的判別式、二次根式以及一元二次方程的定義,根據二次項系數非零、被開方數非負及根的判別式△≥0,列出關于k的一元一次不等式組是解題的關鍵.當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.24、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關于m的解析式,再根據二次函數的性質可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據等腰三角形的性質求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論