2023屆江蘇省蘇州等四市高考考前模擬數學試題含解析_第1頁
2023屆江蘇省蘇州等四市高考考前模擬數學試題含解析_第2頁
2023屆江蘇省蘇州等四市高考考前模擬數學試題含解析_第3頁
2023屆江蘇省蘇州等四市高考考前模擬數學試題含解析_第4頁
2023屆江蘇省蘇州等四市高考考前模擬數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.2.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.3.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.4.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數表選取5個個體,選取方法是從隨機數表(如表)第1行的第4列和第5列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.325.在中,內角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.166.如圖網格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.7.若的內角滿足,則的值為()A. B. C. D.8.已知為定義在上的奇函數,且滿足當時,,則()A. B. C. D.9.已知是平面內互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.10.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.11.已知復數滿足:(為虛數單位),則()A. B. C. D.12.是正四面體的面內一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是等比數列,且,,則__________,的最大值為__________.14.已知函數對于都有,且周期為2,當時,,則________________________.15.設實數,若函數的最大值為,則實數的最大值為______.16.已知函數的最大值為3,的圖象與y軸的交點坐標為,其相鄰兩條對稱軸間的距離為2,則三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內,求的面積.18.(12分)已知函數,,.函數的導函數在上存在零點.求實數的取值范圍;若存在實數,當時,函數在時取得最大值,求正實數的最大值;若直線與曲線和都相切,且在軸上的截距為,求實數的值.19.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t20.(12分)已知直線:(為參數),曲線(為參數).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.21.(12分)已知函數.(1)解不等式;(2)記函數的最小值為,正實數、滿足,求證:.22.(10分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數列中,,且,若數列的前n項和為,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

可過點S作SF∥OE,交AB于點F,并連接CF,從而可得出∠CSF(或補角)為異面直線SC與OE所成的角,根據條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點S作SF∥OE,交AB于點F,連接CF,則∠CSF(或補角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關系,平行線分線段成比例的定理,考查了計算能力,屬于基礎題.2、C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.3、D【解析】

根據三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.4、B【解析】

根據隨機數表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數表第1行的第4列和第5列數字為4和6,所以從這兩個數字開始,由左向右依次選取兩個數字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內的有:16,26,16,24,23,21,…依次不重復的第5個編號為21.故選:B【點睛】本小題主要考查隨機數表法進行抽樣,屬于基礎題.5、C【解析】

根據正弦定理邊化角以及三角函數公式可得,再根據面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.6、C【解析】

利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關鍵,屬于基礎題.7、A【解析】

由,得到,得出,再結合三角函數的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數的性質,以及三角函數的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.8、C【解析】

由題設條件,可得函數的周期是,再結合函數是奇函數的性質將轉化為函數值,即可得到結論.【詳解】由題意,,則函數的周期是,所以,,又函數為上的奇函數,且當時,,所以,.故選:C.【點睛】本題考查函數的周期性,由題設得函數的周期是解答本題的關鍵,屬于基礎題.9、C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設,則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數性質.10、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).11、A【解析】

利用復數的乘法、除法運算求出,再根據共軛復數的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復數的四則運算、共軛復數的概念,屬于基礎題.12、B【解析】

設正四面體的棱長為,建立空間直角坐標系,求出各點的坐標,求出面的法向量,設的坐標,求出向量,求出線面所成角的正弦值,再由角的范圍,結合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標的關系,進而求出正切值.【詳解】由題意設四面體的棱長為,設為的中點,以為坐標原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標系,則可得,,取的三等分點、如圖,則,,,,所以、、、、,由題意設,,和都是等邊三角形,為的中點,,,,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,,可得,此時,則,.故選:B.【點睛】考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】,即的最大值為14、【解析】

利用,且周期為2,可得,得.【詳解】∵,且周期為2,∴,又當時,,∴,故答案為:【點睛】本題考查函數的周期性與對稱性的應用,考查轉化能力,屬于基礎題.15、【解析】

根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.16、【解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數的圖像與性質.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)因為,可得,即可求得答案;(2)分別設、的斜率為和,切點,,可得過點的拋物線的切線方程為:,聯立直線方程和拋物線方程,得到關于一元二次方程,根據,求得,,進而求得切點,坐標,根據兩點間距離公式求得,根據點到直線距離公式求得點到切線的距離,進而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設為和,切點,,過點的拋物線的切線:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切線的方程為,點到切線的距離為,,即的面積為.【點睛】本題主要考查了求拋物線方程和拋物線中三角形面積問題,解題關鍵是掌握拋物線定義和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯立方程組,通過韋達定理建立起目標的關系式18、;4;12.【解析】

由題意可知,,求導函數,方程在區間上有實數解,求出實數的取值范圍;由,則,分步討論,并利用導函數在函數的單調性的研究,得出正實數的最大值;設直線與曲線的切點為,因為,所以切線斜率,切線方程為,設直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,求得,設,則,所以在上單調遞增,最后求出實數的值.【詳解】由題意可知,,則,即方程在區間上有實數解,解得;因為,則,①當,即時,恒成立,所以在上單調遞增,不符題意;②當時,令,解得:,當時,,單調遞增,所以不存在,使得在上的最大值為,不符題意;③當時,,解得:,且當時,,當時,,所以在上單調遞減,在上單調遞增,若,則在上單調遞減,所以,若,則上單調遞減,在上單調遞增,由題意可知,,即,整理得,因為存在,符合上式,所以,解得,綜上,的最大值為4;設直線與曲線的切點為,因為,所以切線斜率,即切線方程整理得:由題意可知,,即,即,解得所以切線方程為,設直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,消去,整理得,且因為,解得,設,則,所以在上單調遞增,因為,所以,所以,即.【點睛】本題主要考查導數在函數中的研究,導數的幾何意義,屬于難題.19、(1)x24+【解析】試題分析:本題主要考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標準方程為x2(2)由題意知,當直線MN斜率存在時,設直線方程為y=k(x-1),M(x聯立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標準方程及其幾何性質、直線與橢圓的位置關系.20、(1);(2).【解析】

(1)將直線和曲線化為普通方程,聯立直線和曲線,可得交點坐標,可得的值;(2)可得曲線的參數方程,利用點到直線的距離公式結合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯立方程組,解得與的交點為,,則.(2)曲線的參數方程為(為參數),故點的坐標為,從而點到直線的距離是,由此當時,取得最小值,且最小值為.【點睛】本題主要考查參數方程與普通方程的轉化及參數方程的基本性質、點到直線的距離公式等,屬于中檔題.21、(1);(2)見解析.【解析】

(1)分、、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對值三角不等式可求得函數的最小值為,進而可得出,再將代數式與相乘,利用基本不等式求得的最小值,進而可證得結論成立.【詳解】(1)當時,由,得,即,解得,此時;當時,由,得,即,解得,此時;當時,由,得,即,解得,此時.綜上所述,不等式的解集為;(2),當且僅當時取等號,所以,.所以,當且僅當,即,時等號成立,所以.所以,即.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式成立,涉及絕對值三角不等式的應用,考查運算求解能力,屬于中等題.22、(Ⅰ)函數在上單調遞減,在單調遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】

(Ⅰ)先求出函數f(x)的導數,通過解關于導數的不等式,從而求出函數的單調區間;(Ⅱ)設g(x)=f(x)﹣ax,先求出函數g(x)的導數,通過討論a的范圍,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論