




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示的正方體的展開圖是()A. B. C. D.2.一個圓錐的側面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.63.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當我的年齡是你現在年齡的時候,你就是18歲”.如果現在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.4.在平面直角坐標系中,二次函數y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.5.cos30°=()A. B. C. D.6.關于x的方程3x+2a=x﹣5的解是負數,則a的取值范圍是()A.a< B.a> C.a<﹣ D.a>﹣7.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關系是()A.點P在⊙O內 B.點P在⊙O外 C.點P在⊙O上 D.無法判斷8.在平面直角坐標系中,位于第二象限的點是()A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)9.隨著“三農”問題的解決,某農民近兩年的年收入發生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據①②③三種農作物每種作物每年的收入占該年年收入的比例繪制的扇形統計圖.依據統計圖得出的以下四個結論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農作物的收入10.2018年春運,全國旅客發送量達29.8億人次,用科學記數法表示29.8億,正確的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×1010二、填空題(共7小題,每小題3分,滿分21分)11.一個正四邊形的內切圓半徑與外接圓半徑之比為:_________________12.太極揉推器是一種常見的健身器材.基本結構包括支架和轉盤,數學興趣小組的同學對某太極揉推器的部分數據進行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點C到立柱頂點B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點,且CD⊥FG,CE⊥MN,則兩個轉盤的最低點F,N距離地面的高度差為_____cm.(結果保留根號)13.若代數式在實數范圍內有意義,則實數x的取值范圍為_____.14.如圖,在矩形ABCD中,AD=4,點P是直線AD上一動點,若滿足△PBC是等腰三角形的點P有且只有3個,則AB的長為.15.以矩形ABCD兩條對角線的交點O為坐標原點,以平行于兩邊的方向為坐標軸,建立如圖所示的平面直角坐標系,BE⊥AC,垂足為E.若雙曲線y=32x16.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點P在小量角器上對應的度數為65°,那么在大量角器上對應的度數為_____度(只需寫出0°~90°的角度).17.如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規律,經過第2019次運動后,動點P的坐標是_______.三、解答題(共7小題,滿分69分)18.(10分)在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長.19.(5分)如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.20.(8分)如圖,在四邊形ABCD中,點E是對角線BD上的一點,EA⊥AB,EC⊥BC,且EA=EC.求證:AD=CD.21.(10分)如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,∠DEB=30°,求弦CD長.22.(10分)如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點D,交AC于點E,連接AD、BD、CD.(1)求證:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.23.(12分)如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點C作AD的垂線EF交直線AD于點E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長.24.(14分)如圖,已知一次函數y1=kx+b(k≠0)的圖象與反比例函數y2=-8x的圖象交于A、B兩點,與坐標軸交于M、N兩點.且點A的橫坐標和點B的縱坐標都是﹣1.求一次函數的解析式;求△AOB的面積;觀察圖象,直接寫出y
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
有些立體圖形是由一些平面圖形圍成的,將它們的表面適當的剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖.根據立體圖形表面的圖形相對位置可以判斷.【詳解】把各個展開圖折回立方體,根據三個特殊圖案的相對位置關系,可知只有選項A正確.故選A【點睛】本題考核知識點:長方體表面展開圖.解題關鍵點:把展開圖折回立方體再觀察.2、C【解析】設母線長為R,底面半徑是3cm,則底面周長=6π,側面積=3πR=12π,
∴R=4cm.故選C.3、D【解析】試題解析:設現在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組4、B【解析】
根據題目給出的二次函數的表達式,可知二次函數的開口向下,即可得出答案.【詳解】二次函數y=a(x﹣h)2+k(a<0)二次函數開口向下.即B成立.故答案選:B.【點睛】本題考查的是簡單運用二次函數性質,解題的關鍵是熟練掌握二次函數性質.5、C【解析】
直接根據特殊角的銳角三角函數值求解即可.【詳解】故選C.【點睛】考點:特殊角的銳角三角函數點評:本題屬于基礎應用題,只需學生熟練掌握特殊角的銳角三角函數值,即可完成.6、D【解析】
先解方程求出x,再根據解是負數得到關于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因為方程的解為負數,所以<0,解得:a>﹣.【點睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負數時,不等號方向要改變.7、B【解析】
比較OP與半徑的大小即可判斷.【詳解】,,,點P在外,故選B.【點睛】本題考查點與圓的位置關系,記住:點與圓的位置關系有3種設的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內.8、D【解析】
點在第二象限的條件是:橫坐標是負數,縱坐標是正數,直接得出答案即可.【詳解】根據第二象限的點的坐標的特征:橫坐標符號為負,縱坐標符號為正,各選項中只有C(﹣3,1)符合,故選:D.【點睛】本題考查點的坐標的性質,解題的關鍵是掌握點的坐標的性質.9、C【解析】
A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農作物的收入,此選項錯誤,故選C.【點睛】本題主要考查扇形統計圖,解題的關鍵是掌握扇形統計圖是用整個圓表示總數用圓內各個扇形的大小表示各部分數量占總數的百分數,并且通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.10、B【解析】
根據科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,且為這個數的整數位數減1,由此即可解答.【詳解】29.8億用科學記數法表示為:29.8億=2980000000=2.98×1.故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】
如圖,正方形ABCD為⊙O的內接四邊形,作OH⊥AB于H,利用正方形的性質得到OH為正方形ABCD的內切圓的半徑,∠OAB=45°,然后利用等腰直角三角形的性質得OA=2OH即可解答.【詳解】解:如圖,正方形ABCD為⊙O的內接四邊形,作OH⊥AB于H,則OH為正方形ABCD的內切圓的半徑,∵∠OAB=45°,∴OA=2OH,∴OHOA即一個正四邊形的內切圓半徑與外接圓半徑之比為22故答案為:22【點睛】本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數)等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.理解正多邊形的有關概念.12、10【解析】
作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【詳解】解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個轉盤的最低點F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【點睛】本題考查解直角三角形的應用,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.13、x≤1【解析】
根據二次根式有意義的條件可求出x的取值范圍.【詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【點睛】本題考查二次根式有意義的條件,解題的關鍵是利用被開方數是非負數解答即可.14、1.【解析】試題分析:如圖,當AB=AD時,滿足△PBC是等腰三角形的點P有且只有3個,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),則AB=AD=1,故答案為1.考點:矩形的性質;等腰三角形的性質;勾股定理;分類討論.15、1【解析】
由雙曲線y=32x(x>0)經過點D知S△ODF=12k=34,由矩形性質知S△AOB=2S△ODF【詳解】如圖,∵雙曲線y=32x∴S△ODF=12k=3則S△AOB=2S△ODF=32,即12OA?BE=∴OA?BE=1,∵四邊形ABCD是矩形,∴OA=OB,∴OB?BE=1,故答案為:1.【點睛】本題主要考查反比例函數圖象上的點的坐標特征,解題的關鍵是掌握反比例函數系數k的幾何意義及矩形的性質.16、1.【解析】
設大量角器的左端點是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對的圓心角是1°,因而P在大量角器上對應的度數為1°.故答案為1.17、(2019,2)【解析】
分析點P的運動規律,找到循環次數即可.【詳解】分析圖象可以發現,點P的運動每4次位置循環一次.每循環一次向右移動四個單位.∴2019=4×504+3當第504循環結束時,點P位置在(2016,0),在此基礎之上運動三次到(2019,2)故答案為(2019,2).【點睛】本題是規律探究題,解題關鍵是找到動點運動過程中,每運動多少次形成一個循環.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)【解析】
(1)連接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根據切線的判定得出即可;(2)解直角三角形求出BD,求出BC,根據勾股定理求出AD,根據相似三角形的判定和性質求出BE,根據相似三角形的性質和判定求出BP即可.【詳解】解:(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切線;(2)∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面積公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.【點睛】本題考查了切線的判定、圓周角定理、勾股定理、解直角三角形、相似三角形的性質和判定等知識點,能綜合運用性質定理進行推理是解此題的關鍵.19、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直線經過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、B、D的坐標,然后分兩種情況討論即可;(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進而得到答案.詳解:(1)由直線經過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標是,點的坐標是.∵拋物線的頂點是點,∴點的坐標是.∵點是軸上一點,∴設點的坐標是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標是.②如果,那么,解得,∴點的坐標是.綜上所述:符合要求的點有兩個,其坐標分別是和.(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P,則EE′⊥AB,P為EE′的中點,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.當a=-1時,=;當a=1時,=;∴點的坐標是或.點睛:本題是二次函數的綜合題.考查了二次函數的性質、解析式的求法以及相似三角形的性質.解答(1)問的關鍵是要分類討論,解答(3)的關鍵是利用兩直線垂直則k的乘積為-1和P是EE′的中點.20、證明見解析【解析】
根據垂直的定義和直角三角形的全等判定,再利用全等三角形的性質解答即可.【詳解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB與Rt△ECB中,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD與△CBD中,∴△ABD≌△CBD,∴AD=CD.【點睛】本題考查了全等三角形的判定及性質,根據垂直的定義和直角三角形的全等判定是解題的關鍵.21、2【解析】試題分析:過O作OF垂直于CD,連接OD,利用垂徑定理得到F為CD的中點,由AE+EB求出直徑AB的長,進而確定出半徑OA與OD的長,由OA﹣AE求出OE的長,在直角三角形OEF中,利用30°所對的直角邊等于斜邊的一半求出OF的長,在直角三角形ODF中,利用勾股定理求出DF的長,由CD=2DF即可求出CD的長.試題解析:過O作OF⊥CD,交CD于點F,連接OD,∴F為CD的中點,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根據勾股定理得:DF=OD2-O則CD=2DF=215.考點:垂徑定理;勾股定理.22、(1)見解析;(2)tan∠DBC=.【解析】
(1)先利用圓周角定理得到∠ACB=90°,再利用平行線的性質得∠AEO=90°,則根據垂徑定理得到,從而有AD=CD;(2)先在Rt△OAE中利用勾股定理計算出AE,則根據正切的定義得到tan∠DAE的值,然后根據圓周角定理得到∠DAC=∠DBC,從而可確定tan∠DBC的值.【詳解】(1)證明:∵AB為直徑,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE==4,∴tan∠DAE=,∵∠DAC=∠DBC,∴tan∠DBC=.【點睛】垂徑定理及圓周角定理是本題的考點,熟練掌握垂徑定理及圓周角定理是解題的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論