




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為研究語文成績和英語成績之間是否具有線性相關關系,統計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值2.國務院發布《關于進一步調整優化結構、提高教育經費使用效益的意見》中提出,要優先落實教育投入.某研究機構統計了年至年國家財政性教育經費投入情況及其在中的占比數據,并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經費的支出持續增長B.年以來,國家財政性教育經費的支出占比例持續年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經費的支出增長最多的年份是年3.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.4.若函數函數只有1個零點,則的取值范圍是()A. B. C. D.5.已知集合,,則集合的真子集的個數是()A.8 B.7 C.4 D.36.《九章算術》“少廣”算法中有這樣一個數的序列:列出“全步”(整數部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數,逐個照此同樣方法,直至全部為整數,例如:及時,如圖:記為每個序列中最后一列數之和,則為()A.147 B.294 C.882 D.17647.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.8.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.9.函數在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-210.設實數、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.1411.在正方體中,E是棱的中點,F是側面內的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值12.設復數滿足為虛數單位),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線(,)過圓:的圓心,則的最小值是______.14.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.15.在的展開式中,常數項為________.(用數字作答)16.已知函數,則不等式的解集為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數,),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.18.(12分)已知,,(1)求的最小正周期及單調遞增區間;(2)已知銳角的內角,,的對邊分別為,,,且,,求邊上的高的最大值.19.(12分)某商場為改進服務質量,隨機抽取了200名進場購物的顧客進行問卷調查.調查后,就顧客“購物體驗”的滿意度統計如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認為顧客購物體驗的滿意度與性別有關?(2)為答謝顧客,該商場對某款價格為100元/件的商品開展促銷活動.據統計,在此期間顧客購買該商品的支付情況如下:支付方式現金支付購物卡支付APP支付頻率10%30%60%優惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應事件發生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數學期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)已知函數f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當x>0時,若函數g(x)(a>0)的最小值恒大于f(x),求實數a的取值范圍.21.(12分)某商場舉行優惠促銷活動,顧客僅可以從以下兩種優惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽取),所得結果和享受的優惠如下表:(注:所有小球僅顏色有區別)紅球個數3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?22.(10分)設為坐標原點,動點在橢圓:上,該橢圓的左頂點到直線的距離為.(1)求橢圓的標準方程;(2)若橢圓外一點滿足,平行于軸,,動點在直線上,滿足.設過點且垂直的直線,試問直線是否過定點?若過定點,請寫出該定點,若不過定點請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據散點圖呈現的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養.2.C【解析】
觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【點睛】本題考查統計圖表,正確認識圖表是解題基礎.3.B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.4.C【解析】
轉化有1個零點為與的圖象有1個交點,求導研究臨界狀態相切時的斜率,數形結合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數在函數零點問題中的應用,考查了學生數形結合,轉化劃歸,數學運算的能力,屬于較難題.5.D【解析】
轉化條件得,利用元素個數為n的集合真子集個數為個即可得解.【詳解】由題意得,,集合的真子集的個數為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數問題,屬于基礎題.6.A【解析】
根據題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數學文化,屬于基礎題.7.C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質,考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題.8.C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).9.B【解析】
由函數解析式中含絕對值,所以去絕對值并畫出函數圖象,結合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數的圖象如下所示;由函數圖像可知,當時,有最大值,當時,有最小值.故選:B.【點睛】本題考查了絕對值函數圖象的畫法,由函數圖象求函數的最值,屬于基礎題.10.D【解析】
做出滿足條件的可行域,根據圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據圖象,當目標函數過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區域,利用數形結合求線性目標函數的最值,屬于基礎題.11.C【解析】
分別根據線面平行的性質定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內的相交直線平面平面,由此結合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質、空間位置關系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.12.B【解析】
易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.;【解析】
求出圓心坐標,代入直線方程得的關系,再由基本不等式求得題中最小值.【詳解】圓:的標準方程為,圓心為,由題意,即,∴,當且僅當,即時等號成立,故答案為:.【點睛】本題考查用基本不等式求最值,考查圓的標準方程,解題方法是配方法求圓心坐標,“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.14.11【解析】
將圖形中左側的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數原理,求得總的方法數.【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.15.【解析】
的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.16.【解析】
,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數的應用,涉及到解一元二次不等式,考查學生的計算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),以為圓心,為半徑的圓;(2)【解析】
(1)根據極坐標與直角坐標的互化公式,直接得到的直角坐標方程并判斷形狀;(2)聯立直線參數方程與的直角坐標方程,根據直線參數方程中的幾何意義結合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設點,所對應的參數分別為,,則,.,解得,則.【點睛】本題考查極坐標與直角坐標的互化以及根據直線參數方程中的幾何意義求值,難度一般.(1)極坐標與直角坐標的互化公式:;(2)若要使用直線參數方程中的幾何意義,要注意將直線的標準參數方程代入到對應曲線的直角坐標方程中,構成關于的一元二次方程并結合韋達定理形式進行分析求解.18.(1)的最小正周期為:;函數單調遞增區間為:;(2).【解析】
(1)根據誘導公式,結合二倍角的正弦公式、輔助角公式把函數的解析式化簡成余弦型函數解析式形式,利用余弦型函數的最小正周期公式和單調性進行求解即可;(2)由(1)結合,求出的大小,再根據三角形面積公式,結合余弦定理和基本不等式進行求解即可.【詳解】(1)的最小正周期為:;當時,即當時,函數單調遞增,所以函數單調遞增區間為:;(2)因為,所以設邊上的高為,所以有,由余弦定理可知:(當用僅當時,取等號),所以,因此邊上的高的最大值.【點睛】本題考查了正弦的二倍角公式、誘導公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應用,考查了數學運算能力.19.(1)有97.5%的把握認為顧客購物體驗的滿意度與性別有關;(2)67元,見解析.【解析】
(1)根據表格數據代入公式,結合臨界值即得解;(2)的可能取值為40,60,80,1,根據題意依次計算概率,列出分布列,求數學期望即可.【詳解】(1)由題得,所以,有97.5%的把握認為顧客購物體驗的滿意度與性別有關.(2)由題意可知的可能取值為40,60,80,1.,,,.則的分布列為4060801所以,(元).【點睛】本題考查了統計和概率綜合,考查了列聯表,隨機變量的分布列和數學期望等知識點,考查了學生數據處理,綜合分析,數學運算的能力,屬于中檔題.20.(Ⅰ);(Ⅱ)。【解析】
(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當時,原不等式可化為,此時不成立;當時,原不等式可化為,解得,即;當時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因為,當且僅當時等號成立,所以.當時,,所以.所以,解得,故實數的取值范圍為.【點睛】本題主要考查了絕對值不等式的解法,以及轉化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現了數形結合的思想;法二:利用“零點分段法”求解,體現了分類討論的思想;法三:通過構造函數,利用函數的圖象求解,體現了函數與方程的思想.21.(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優惠的概率,獲得8折優惠的概率,相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO/IEC TS 17021-5:2014 RU Conformity assessment - Requirements for bodies providing audit and certification of management systems - Part 5: Competence requirements for au
- 【正版授權】 ISO/IEC 17067:2013 RU Conformity assessment - Fundamentals of product certification and guidelines for product certification schemes
- 【正版授權】 IEC 62841-2-10:2017+AMD1:2024 CSV EN Electric motor-operated hand-held tools,transportable tools and lawn and garden machinery - Safety - Part 2-10: Particular requirements
- 幼兒園小班2025年春工作方案
- 中南傳媒行業數據報告
- 幼兒中班個人工作方案2025年
- 2025年度鄉鎮政府工作方案演講稿
- 2025年關于學校家訪的工作方案
- 2025年學校教研個人工作方案
- 伺服系統與工業機器人 課件匯 第1-5章 伺服系統概述-伺服系統的控制結構與模式
- 蜘蛛開店第二課時 教案
- 模擬試卷:2023-2024學年八年級下學期語文期中模擬考試(考試版A4)【測試范圍:1-3單元】(廣東深圳專用)
- 零星維修工程投標方案(技術方案)
- DBJ04∕T 390-2019 基坑工程裝配式鋼支撐技術標準
- 痕跡檢驗練習題
- 2024年山東省青島市中考數學試卷(附答案)
- 《第1節-原子結構與元素性質》(第1課時)-課件
- 佛山市2023-2024學年高二下學期7月期末英語試題(解析版)
- 人教版數學四年級下冊3運算定律《解決問題策略的多樣性》說課稿
- 糧食儲備公司工作計劃
- 2024屆楚雄彝族自治州大姚縣數學五年級第二學期期末達標檢測試題含解析
評論
0/150
提交評論