2023屆廣東省廣州市增城高級中學高三壓軸卷數學試卷含解析_第1頁
2023屆廣東省廣州市增城高級中學高三壓軸卷數學試卷含解析_第2頁
2023屆廣東省廣州市增城高級中學高三壓軸卷數學試卷含解析_第3頁
2023屆廣東省廣州市增城高級中學高三壓軸卷數學試卷含解析_第4頁
2023屆廣東省廣州市增城高級中學高三壓軸卷數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件2.已知函數,,則的極大值點為()A. B. C. D.3.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種4.已知等差數列的前項和為,且,則()A.45 B.42 C.25 D.365.臺球是一項國際上廣泛流行的高雅室內體育運動,也叫桌球(中國粵港澳地區的叫法)、撞球(中國地區的叫法)控制撞球點、球的旋轉等控制母球走位是擊球的一項重要技術,一次臺球技術表演節目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F處各放一個目標球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F處的目標球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm6.已知,且,則在方向上的投影為()A. B. C. D.7.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.8.執行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.9.設為虛數單位,復數,則實數的值是()A.1 B.-1 C.0 D.210.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.2711.已知變量x,y間存在線性相關關系,其數據如下表,回歸直線方程為,則表中數據m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.512.已知復數z=(1+2i)(1+ai)(a∈R),若z∈R,則實數a=()A. B. C.2 D.﹣2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若,則的取值范圍是__14.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.15.一個村子里一共有個人,其中一個人是謠言制造者,他編造了一條謠言并告訴了另一個人,這個人又把謠言告訴了第三個人,如此等等.在每一次謠言傳播時,謠言的接受者都是在其余個村民中隨機挑選的,當謠言傳播次之后,還沒有回到最初的造謠者的概率是_______.16.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)第7屆世界軍人運動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設置射擊、游泳、田徑、籃球等27個大項,329個小項.共有來自100多個國家的近萬名現役軍人同臺競技.前期為迎接軍運會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動,努力讓大家更多的了解軍運會的相關知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運會知識的知曉情況,在全市開展了網上問卷調查,民眾參與度極高,現從大批參與者中隨機抽取200名幸運參與者,他們得分(滿分100分)數據,統計結果如下:組別頻數5304050452010(1)若此次問卷調查得分整體服從正態分布,用樣本來估計總體,設,分別為這200人得分的平均值和標準差(同一組數據用該區間中點值作為代表),求,的值(,的值四舍五入取整數),并計算;(2)在(1)的條件下,為感謝大家參與這次活動,市體育局還對參加問卷調查的幸運市民制定如下獎勵方案:得分低于的可以獲得1次抽獎機會,得分不低于的可獲得2次抽獎機會,在一次抽獎中,抽中價值為15元的紀念品A的概率為,抽中價值為30元的紀念品B的概率為.現有市民張先生參加了此次問卷調查并成為幸運參與者,記Y為他參加活動獲得紀念品的總價值,求Y的分布列和數學期望,并估算此次紀念品所需要的總金額.(參考數據:;;.)18.(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點N到平面CDM的距離.19.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.20.(12分)已知函數(1)解不等式;(2)若函數,若對于任意的,都存在,使得成立,求實數的取值范圍.21.(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.22.(10分)一種游戲的規則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設拋擲4次的得分為,求變量的分布列和數學期望.(2)當游戲得分為時,游戲停止,記得分的概率和為.①求;②當時,記,證明:數列為常數列,數列為等比數列.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數在解三角形中的具體應用,屬于基礎題2、A【解析】

求出函數的導函數,令導數為零,根據函數單調性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區間單調遞增,在單調遞減,在單調遞增,故的極大值點為.故選:A.【點睛】本題考查利用導數求函數的極值點,屬基礎題.3、D【解析】

采取分類計數和分步計數相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題4、D【解析】

由等差數列的性質可知,進而代入等差數列的前項和的公式即可.【詳解】由題,.故選:D【點睛】本題考查等差數列的性質,考查等差數列的前項和.5、D【解析】

過點做正方形邊的垂線,如圖,設,利用直線三角形中的邊角關系,將用表示出來,根據,列方程求出,進而可得正方形的邊長.【詳解】過點做正方形邊的垂線,如圖,設,則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點睛】本題考查直角三角形中的邊角關系,關鍵是要構造直角三角形,是中檔題.6、C【解析】

由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數量積與投影.掌握向量垂直與數量積的關系是解題關鍵.7、A【解析】

畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.8、B【解析】

根據程序框圖知當時,循環終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執行的求解策略.9、A【解析】

根據復數的乘法運算化簡,由復數的意義即可求得的值.【詳解】復數,由復數乘法運算化簡可得,所以由復數定義可知,解得,故選:A.【點睛】本題考查了復數的乘法運算,復數的意義,屬于基礎題.10、D【解析】

設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.11、A【解析】

計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關鍵是掌握性質:線性回歸直線一定過中心點.12、D【解析】

化簡z=(1+2i)(1+ai)=,再根據z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數的運算及概念,還考查了運算求解的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據分段函數的性質,即可求出的取值范圍.【詳解】當時,,,當時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數的性質,已知分段函數解析式求參數范圍,還涉及對數和指數的運算,屬于基礎題.14、2【解析】

運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.15、【解析】

利用相互獨立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會回到最初的人;從第2次傳播開始,每1次謠言傳播,第一個制造謠言的人被選中的概率都是,沒有被選中的概率是.次傳播是相互獨立的,故為故答案為:【點睛】本題考查了相互獨立事件概率的乘法公式,考查了考生的分析能力,屬于基礎題.16、【解析】

求的最小值可以轉化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現了數形結合的數學思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,;(2)詳見解析.【解析】

(1)根據頻率分布表計算出平均數,進而計算方差,從而X~N(65,142),計算P(51<X<93)即可;(2)列出Y所有可能的取值,分布求出每個取值對應的概率,列出分布列,計算期望,進而可得需要的總金額.【詳解】解:(1)由已知頻數表得:,,由,則,而,所以,則X服從正態分布,所以;(2)顯然,,所以所有Y的取值為15,30,45,60,,,,,所以Y的分布列為:Y15304560P所以,需要的總金額為:.【點睛】本題考查了利用頻率分布表計算平均數,方差,考查了正態分布,考查了離散型隨機變量的概率分布列和數學期望,主要考查數據分析能力和計算能力,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)因為正方形ABCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因為平面ABMN,平面ABMN,所以,,因為,所以,因為,所以,所以,因為在直角梯形ABMN中,,所以,所以,所以,因為,所以平面.(2)如圖,取BM的中點E,則,又BM∥AN,所以四邊形ABEN是平行四邊形,所以NE∥AB,又AB∥CD,所以NE∥CD,因為平面CDM,平面CDM,所以NE∥平面CDM,所以點N到平面CDM的距離與點E到平面CDM的距離相等,設點N到平面CDM的距離為h,由可得點B到平面CDM的距離為2h,由題易得平面BCM,所以,且,所以,又,所以由可得,解得,所以點N到平面CDM的距離為.19、(I)證明見解析;(II)1【解析】

(I)過D作DE⊥BC于E,連接SE,根據勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點睛】本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.20、(1)(2)【解析】

(1)將表示為分段函數的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據分段函數解析式,求得的取值范圍,結合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點睛】本小題考查了絕對值不等式,絕對值三角不等式和函數最值問題,考查運算求解能力,推理論證能力,化歸與轉化思想.21、(1);(2)不存在,理由見解析【解析】

(1)寫出,根據,斜率乘積為-1,建立等量關系求解離心率;(2)寫出直線AB的方程,根據韋達定理求出點B的坐標,計算出弦長,根據垂直關系同理可得,利用等式即可得解.【詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論