




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,,則()A. B. C. D.2.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.3.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調.如圖的程序是與“三分損益”結合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.4.已知數列的通項公式是,則()A.0 B.55 C.66 D.785.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形6.雙曲線C:(,)的離心率是3,焦點到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.7.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.8.若集合,,則下列結論正確的是()A. B. C. D.9.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數超過102C.四個月的數據顯示北京市的居民消費價格指數增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數的增長呈上升趨勢10.二項式的展開式中只有第六項的二項式系數最大,則展開式中的常數項是()A.180 B.90 C.45 D.36011.執行下面的程序框圖,則輸出的值為()A. B. C. D.12.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設變量,滿足約束條件,則目標函數的最小值為______.14.在中,內角所對的邊分別為,若,的面積為,則_______,_______.15.若變量,滿足約束條件則的最大值為________.16.某種產品的質量指標值服從正態分布,且.某用戶購買了件這種產品,則這件產品中質量指標值位于區間之外的產品件數為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,,四邊形ABCD內接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.18.(12分)選修4-5:不等式選講設函數f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求19.(12分)已知在平面直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.20.(12分)如圖,在三棱柱中,平面平面,側面為平行四邊形,側面為正方形,,,為的中點.(1)求證:平面;(2)求二面角的大小.21.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.22.(10分)小麗在同一城市開的2家店鋪各有2名員工.節假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調劑1人到該店維持營業,否則該店就停業.(1)求發生調劑現象的概率;(2)設營業店鋪數為X,求X的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
求得集合中函數的值域,由此求得,進而求得.【詳解】由,得,所以,所以.故選:A【點睛】本小題主要考查函數值域的求法,考查集合補集、交集的概念和運算,屬于基礎題.2、D【解析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.3、B【解析】
根據循環語句,輸入,執行循環語句即可計算出結果.【詳解】輸入,由題意執行循環結構程序框圖,可得:第次循環:,,不滿足判斷條件;第次循環:,,不滿足判斷條件;第次循環:,,滿足判斷條件;輸出結果.故選:【點睛】本題考查了循環語句的程序框圖,求輸出的結果,解答此類題目時結合循環的條件進行計算,需要注意跳出循環的判定語句,本題較為基礎.4、D【解析】
先分為奇數和偶數兩種情況計算出的值,可進一步得到數列的通項公式,然后代入轉化計算,再根據等差數列求和公式計算出結果.【詳解】解:由題意得,當為奇數時,,當為偶數時,所以當為奇數時,;當為偶數時,,所以故選:D【點睛】此題考查數列與三角函數的綜合問題,以及數列求和,考查了正弦函數的性質應用,等差數列的求和公式,屬于中檔題.5、B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數的運算性質的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.6、A【解析】
根據焦點到漸近線的距離,可得,然后根據,可得結果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A【點睛】本題考查雙曲線漸近線方程,以及之間的關系,識記常用的結論:焦點到漸近線的距離為,屬基礎題.7、B【解析】
根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.8、D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數學運算能力,屬于基礎題.9、D【解析】
采用逐一驗證法,根據圖表,可得結果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數的增長呈上升趨勢故選:D【點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎題.10、A【解析】試題分析:因為的展開式中只有第六項的二項式系數最大,所以,,令,則,.考點:1.二項式定理;2.組合數的計算.11、D【解析】
根據框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,
,,,,,結束循環,故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環結構,條件分支結構,屬于中檔題.12、D【解析】
由雙曲線方程可得漸近線方程,根據傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據雙曲線漸近線傾斜角求解參數值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.二、填空題:本題共4小題,每小題5分,共20分。13、-8【解析】
通過約束條件,畫出可行域,將問題轉化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當過時,在軸截距最大本題正確結果:【點睛】本題考查線性規劃中的型最值的求解問題,關鍵在于將所求最值轉化為在軸截距的問題.14、【解析】
由已知及正弦定理,三角函數恒等變換的應用可得,從而求得,結合范圍,即可得到答案運用余弦定理和三角形面積公式,結合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點睛】本題主要考查了運用正弦定理、余弦定理和面積公式解三角形,題目較為基礎,只要按照題意運用公式即可求出答案15、7【解析】
畫出不等式組表示的平面區域,數形結合,即可容易求得目標函數的最大值.【詳解】作出不等式組所表示的平面區域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區域、線性規劃,主要考查推理論證能力以及數形結合思想,屬基礎題.16、【解析】
直接計算,可得結果.【詳解】由題可知:則質量指標值位于區間之外的產品件數:故答案為:【點睛】本題考查正太分布中原則,審清題意,簡單計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值,求出,即可得答案;(2)根據題意可知,,因為,所以可設直線CD的方程為,將直線代入曲線的方程,利用韋達定理得到的關系,再代入斜率公式可證得為定值.【詳解】(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值.所以,所以,,故橢圓E的標準方程為.(2)根據題意可知,,因為,所以可設直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.【點睛】本題考查橢圓標準方程的求解、橢圓中的定值問題,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標法的運用.18、(1)見解析.(1)(-1,0).【解析】試題分析:(1)直接計算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分區間討論去絕對值符號分別解不等式即可.試題解析:(1)證明:函數f(x)=|x﹣a|,a<2,則f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.當x≤a時,f(x)=a﹣x+a﹣1x=1a﹣3x,則f(x)≥﹣a;當a<x<時,f(x)=x﹣a+a﹣1x=﹣x,則﹣<f(x)<﹣a;當x時,f(x)=x﹣a+1x﹣a=3x﹣1a,則f(x)≥﹣.則f(x)的值域為[﹣,+∞).不等式f(x)+f(1x)<的解集非空,即為>﹣,解得,a>﹣1,由于a<2,則a的取值范圍是(-1,0).考點:1.含絕對值不等式的證明與解法.1.基本不等式.19、(1)(2)最大值;最小值.【解析】
(1)結合極坐標和直角坐標的互化公式可得;(2)利用參數方程,求解點到直線的距離公式,結合三角函數知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標和直角坐標的轉化及最值問題,橢圓上的點到直線的距離的最值求解優先考慮參數方法,側重考查數學運算的核心素養.20、(1)證明見解析(2)【解析】
(1)連接,交與,連接,由,得出結論;(2)以為原點,,,分別為,,軸建立空間直角坐標系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點,,,分別為,,軸建立空間直角坐標系,,,,,,,設平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)證明見解析;(2).【解析】
(1)通過證明面,即可由線面垂直推證面面垂直;(2)根據面,將問題轉化為求到面的距離,利用等體積法求點面距離即可.【詳解】(1)因為棱柱是直三棱柱,所以又,所以面又,分別為AB,BC的中點所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即點到平面的距離等于點到平面的距離設點到面的距離為由(1)可知,面且在中,,易知由等體積公式可知即由得所以到平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上海市住宅商品房預售合同示范文本
- 亞馬遜云服務合同樣本
- 個人結婚購房合同樣本
- 公司道路施工合同樣本
- 電機定制改造方案范本
- 改進貨物接收流程的工作計劃
- 傳媒公司推廣合同標準文本
- 公司協議收購合同標準文本
- 樂器出口合同樣本
- 代售收取傭金合同樣本
- 中國桂花茶行業市場前景預測及投資價值評估分析報告
- 陜西省縣以下醫療衛生機構定向招聘真題2024
- 【初中信息】數據分析與處理(課件)-八年級信息科技全一冊同步教學(人教版2024)
- 2024年中國郵政儲蓄銀行廣東省分行招聘筆試真題
- 危重患者護理操作流程
- 2025山東能源集團中級人才庫選拔易考易錯模擬試題(共500題)試卷后附參考答案
- 第五單元:數學廣角-鴿巢問題(教學設計)-【大單元教學】六年級數學下冊同步備課系列(人教版)
- 《水利工程建設項目生產安全重大事故隱患清單指南》知識培訓
- 浙江省溫州市瑞安市2023-2024學年六年級下學期數學期中分項評價試卷(含答案)
- 山東省德州市2024年中考化學試卷(含答案)
- 肝淤血病理切片
評論
0/150
提交評論