2021-2022學年浙江省金華義烏市中考押題數學預測卷含解析_第1頁
2021-2022學年浙江省金華義烏市中考押題數學預測卷含解析_第2頁
2021-2022學年浙江省金華義烏市中考押題數學預測卷含解析_第3頁
2021-2022學年浙江省金華義烏市中考押題數學預測卷含解析_第4頁
2021-2022學年浙江省金華義烏市中考押題數學預測卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖1,將三角板的直角頂點放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數為A.80° B.50° C.30° D.20°2.以坐標原點為圓心,以2個單位為半徑畫⊙O,下面的點中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)3.一個不透明的布袋里裝有7個只有顏色不同的球,其中3個紅球,4個白球,從布袋中隨機摸出一個球,摸出的球是紅球的概率是()A. B. C. D.4.實數a、b在數軸上的對應點的位置如圖所示,則正確的結論是()A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<05.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m6.A種飲料比B種飲料單價少1元,小峰買了2瓶A種飲料和3瓶B種飲料,一共花了13元,如果設B種飲料單價為x元/瓶,那么下面所列方程正確的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=137.某商品的進價為每件元.當售價為每件元時,每星期可賣出件,現需降價處理,為占有市場份額,且經市場調查:每降價元,每星期可多賣出件.現在要使利潤為元,每件商品應降價()元.A.3 B.2.5 C.2 D.58.如圖,將矩形ABCD沿對角線BD折疊,使C落在C'處,BC'交AD于E,則下列結論不一定成立的是()A.AD=BC' B.∠EBD=∠EDBC.ΔABE~ΔCBD D.sin9.將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-210.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④11.把a?的根號外的a移到根號內得()A. B.﹣ C.﹣ D.12.實數a,b在數軸上對應的點的位置如圖所示,則正確的結論是()A.a+b<0 B.a>|﹣2| C.b>π D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一元二次方程2x2﹣5x+1=0的兩根為m,n,則m2+n2=_____.14.已知關于x的方程x2-23x-k=0有兩個相等的實數根,則k的值為__________.15.如圖,校園內有一棵與地面垂直的樹,數學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).16.在比例尺為1:50000的地圖上,量得甲、乙兩地的距離為12厘米,則甲、乙兩地的實際距離是______千米.17.已知點(﹣1,m)、(2,n)在二次函數y=ax2﹣2ax﹣1的圖象上,如果m>n,那么a____0(用“>”或“<”連接).18.已知菱形的周長為10cm,一條對角線長為6cm,則這個菱形的面積是_____cm1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹狀圖或列表)20.(6分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.21.(6分)如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.求雙曲線解析式;點P在x軸上,如果△ACP的面積為5,求點P的坐標.22.(8分)4月23日是世界讀書日,習近平總書記說:“讀書可以讓人保持思想活力,讓人得到智慧啟發,讓人滋養浩然之氣。”某校響應號召,鼓勵師生利用課余時間廣泛閱讀,該校文學社為了解學生課外閱讀的情況,抽樣調查了部分學生每周用于課外閱讀的時間,過程如下:收集數據從學校隨機抽取20名學生,進行了每周用于課外閱讀時間的調查,數據如下(單位:min):30608150401101301469010060811201407081102010081整理數據按如下分段整理樣本數據并補全表格:課外閱讀時間(min)等級DCBA人數38分析數據補全下列表格中的統計量:平均數中位數眾數80得出結論(1)用樣本中的統計量估計該校學生每周用于課外閱讀時間的情況等級為;(2)如果該校現有學生400人,估計等級為“”的學生有多少名?(3)假設平均閱讀一本課外書的時間為160分鐘,請你選擇一種統計量估計該校學生每人一年(按52周計算)平均閱讀多少本課外書?23.(8分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數按一、二、三、四班分別記為A1,A2,A3,A4,現對A1,A2,A3,A4統計后,制成如圖所示的統計圖.(1)求七年級已“建檔立卡”的貧困家庭的學生總人數;(2)將條形統計圖補充完整,并求出A1所在扇形的圓心角的度數;(3)現從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.24.(10分)如圖,將連續的奇數1,3,5,7…按如圖中的方式排成一個數,用一個十字框框住5個數,這樣框出的任意5個數中,四個分支上的數分別用a,b,c,d表示,如圖所示.(1)計算:若十字框的中間數為17,則a+b+c+d=______.(2)發現:移動十字框,比較a+b+c+d與中間的數.猜想:十字框中a、b、c、d的和是中間的數的______;(3)驗證:設中間的數為x,寫出a、b、c、d的和,驗證猜想的正確性;(4)應用:設M=a+b+c+d+x,判斷M的值能否等于2020,請說明理由.25.(10分)已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.26.(12分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.27.(12分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網格圖中有A、B兩點,請在答題卷給出的兩個網格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:根據平行線的性質,得∠4=∠2=50°,再根據三角形的外角的性質∠3=∠4-∠1=50°-30°=20°.故答案選D.考點:平行線的性質;三角形的外角的性質.2、B【解析】

根據點到圓心的距離和半徑的數量關系即可判定點與圓的位置關系.【詳解】A選項,(1,1)到坐標原點的距離為<2,因此點在圓內,B選項(,)到坐標原點的距離為=2,因此點在圓上,C選項(1,3)到坐標原點的距離為>2,因此點在圓外D選項(1,)到坐標原點的距離為<2,因此點在圓內,故選B.【點睛】本題主要考查點與圓的位置關系,解決本題的關鍵是要熟練掌握點與圓的位置關系.3、B【解析】袋中一共7個球,摸到的球有7種可能,而且機會均等,其中有3個紅球,因此摸到紅球的概率為,故選B.4、C【解析】

直接利用a,b在數軸上的位置,進而分別對各個選項進行分析得出答案.【詳解】選項A,從數軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數軸上看出,a在原點左側,b在原點右側,∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數軸上看出,a在b的左側,∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【點睛】本題考查數軸和有理數的四則運算,解題的關鍵是掌握利用數軸表示有理數的大小.5、B【解析】

因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據正弦來解題,求出∠CAB,進而得出∠C′AB′的度數,然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉化為數學問題.6、A【解析】

要列方程,首先要根據題意找出題中存在的等量關系,由題意可得到:買A飲料的錢+買B飲料的錢=總印數1元,明確了等量關系再列方程就不那么難了.【詳解】設B種飲料單價為x元/瓶,則A種飲料單價為(x-1)元/瓶,根據小峰買了2瓶A種飲料和3瓶B種飲料,一共花了1元,可得方程為:2(x-1)+3x=1.故選A.【點睛】列方程題的關鍵是找出題中存在的等量關系,此題的等量關系為買A中飲料的錢+買B中飲料的錢=一共花的錢1元.7、A【解析】

設售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現在可以賣出[300+20(60-x)]件,然后根據盈利為6120元即可列出方程解決問題.【詳解】解:設售價為x元時,每星期盈利為6120元,

由題意得(x-40)[300+20(60-x)]=6120,

解得:x1=57,x2=1,

由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=1.

∴每件商品應降價60-57=3元.

故選:A.【點睛】本題考查了一元二次方程的應用.此題找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.8、C【解析】分析:主要根據折疊前后角和邊相等對各選項進行判斷,即可選出正確答案.詳解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正確.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正確.D、∵sin∠ABE=AEBE∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=AEED由已知不能得到△ABE∽△CBD.故選C.點睛:本題可以采用排除法,證明A,B,D都正確,所以不正確的就是C,排除法也是數學中一種常用的解題方法.9、A【解析】試題分析:根據函數圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是y=(x﹣1)2+2,故選A.考點:二次函數圖象與幾何變換.10、D【解析】試題分析:首先要理解清楚題意,知道總的客車數量及總的人數不變,然后采用排除法進行分析從而得到正確答案.解:根據總人數列方程,應是40m+10=43m+1,①錯誤,④正確;根據客車數列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.11、C【解析】

根據二次根式有意義的條件可得a<0,原式變形為﹣(﹣a)?,然后利用二次根式的性質得到,再把根號內化簡即可.【詳解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)?,=,=﹣.故選C.【點睛】本題考查的是二次根式的化簡,主要是判斷根號有意義的條件,然后確定值的范圍再進行化簡,是??碱}型.12、D【解析】

根據數軸上點的位置,可得a,b,根據有理數的運算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點睛】本題考查了實數與數軸,利用有理數的運算是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

先由根與系數的關系得:兩根和與兩根積,再將m2+n2進行變形,化成和或積的形式,代入即可.【詳解】由根與系數的關系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案為:.【點睛】本題考查了利用根與系數的關系求代數式的值,先將一元二次方程化為一般形式,寫出兩根的和與積的值,再將所求式子進行變形;如、x12+x22等等,本題是??碱}型,利用完全平方公式進行轉化.14、-3【解析】試題解析:根據題意得:△=(23)2-4×1×(-k)=0,即12+4k=0,

解得:k=-3,15、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據三角函數的幾何意義得出各線段的比例關系,從而得出答案.16、【解析】

本題可根據比例線段進行求解.【詳解】解:因為在比例尺為1:50000的地圖上甲,乙兩地的距離12cm,所以,甲、乙的實際距離x滿足12:x=1:50000,即x=12=600000cm=6km.故答案為6.【點睛】本題主要考查比例尺和比例線段的相關知識.17、>;【解析】

∵=a(x-1)2-a-1,∴拋物線對稱軸為:x=1,由拋物線的對稱性,點(-1,m)、(2,n)在二次函數的圖像上,∵|?1?1|>|2?1|,且m>n,∴a>0.故答案為>18、14【解析】

根據菱形的性質,先求另一條對角線的長度,再運用菱形的面積等于對角線乘積的一半求解.【詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【點睛】此題考查了菱形的性質及面積求法,難度不大.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(2),圖形見解析.【解析】

(1)根據概率的定義即可求出;(2)先根據題意列出樹狀圖,再利用概率公式進行求解.【詳解】(1)由題意P(選中的男主持人為甲班)=(2)列出樹狀圖如下∴P(選中的男女主持人均為甲班的)=【點睛】此題主要考查概率的計算,解題的關鍵是根據題意列出樹狀圖進行求解.20、米.【解析】

先求拋物線對稱軸,再根據待定系數法求拋物線解析式,再求函數最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設拋物線的表達式為:y=ax2+bx+1(a≠0),則據題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點睛】本題考核知識點:二次函數的應用.解題關鍵點:熟記二次函數的基本性質.21、(1);(2)(,0)或【解析】

(1)把A點坐標代入直線解析式可求得n的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(x,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于x的方程,解方程可求得P點的坐標.【詳解】解:(1)把A(2,n)代入直線解析式得:n=3,∴A(2,3),把A坐標代入y=,得k=6,則雙曲線解析式為y=.(2)對于直線y=x+2,令y=0,得到x=-4,即C(-4,0).設P(x,0),可得PC=|x+4|.∵△ACP面積為5,∴|x+4|?3=5,即|x+4|=2,解得:x=-或x=-,則P坐標為或.22、(1)填表見解析;(2)160名;(3)平均數;26本.【解析】【分析】先確定統計表中的C、A等級的人數,再根據中位數和眾數的定義得到樣本數據的中位數和眾數;(1)根據統計量,結合統計表進行估計即可;(2)用“B”等級人數所占的比例乘以全校的學生數即可得;(3)選擇平均數,計算出全年閱讀時間,然后再除以閱讀一本課外書的時間即可得.【詳解】整理數據按如下分段整理樣本數據并補全表格:課外閱讀時間(min)等級DCBA人數3584分析數據補全下列表格中的統計量:平均數中位數眾數808181得出結論(1)觀察統計量表格可以估計該校學生每周用于課外閱讀時間的情況等級B,故答案為:B;(2)8÷20×400=160∴該校等級為“”的學生有160名;(3)選統計量:平均數80×52÷160=26,∴該校學生每人一年平均閱讀26本課外書.【點睛】本題考查了中位數、眾數、平均數、統計表、用樣本估計總體等知識,熟練掌握各統計量的求解方法是關鍵.23、(1)15人;(2)補圖見解析.(3)12【解析】

(1)根據三班有6人,占的百分比是40%,用6除以所占的百分比即可得總人數;(2)用總人數減去一、三、四班的人數得到二班的人數即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數;(3)根據題意畫出樹狀圖,得出所有可能,進而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學生總人數:6÷40%=15人;(2)A2的人數為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數為:215(3)畫出樹狀圖如下:共6種等可能結果,符合題意的有3種∴選出一名男生一名女生的概率為:P=36【點睛】本題考查了條形圖與扇形統計圖,概率等知識,準確識圖,從圖中發現有用的信息,正確根據已知畫出樹狀圖得出所有可能是解題關鍵.24、(1)68

;(2)4倍;(3)4x,猜想正確,見解析;(4)M的值不能等于1,見解析.【解析】

(1)直接相加即得到答案;(2)根據(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合數表里數的特征,故不能等于1.【詳解】(1)5+15+19+29=68,故答案為68;(2)根據(1)猜想a+b+c+d=4x,答案為:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正確;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整個數表所有的數都為奇數,故不成立,∴M的值不能等于1.【點睛】本題考查了一元一次方程的應用.當解得方程的解后,要觀察是否滿足題目和實際要求再進行取舍.25、證明見解析【解析】證明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四邊形ABCD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形).(1)利用兩邊和它們的夾角對應相等的兩三角形全等(SAS),這一判定定理容易證明△AFD≌△CEB.(2)由△AFD≌△CEB,容易證明AD=BC且AD∥BC,可根據一組對邊平行且相等的四邊形是平行四邊形.26、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解析】

(1)把點B和D的坐標代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標,設直線AD的解析式為y=kx+a,把A和D的坐標代入得出方程組,解方程組即可;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),代入拋物線解析式,即可得出結果.【詳解】解:(1)把點B和D的坐標代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設直線AD的解析式為y=kx+a,把A和D的坐標代入得:解得:k=1,a=1,∴直線AD的解析式為y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論