2022-2023學(xué)年山東省煙臺市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年山東省煙臺市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年山東省煙臺市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年山東省煙臺市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年山東省煙臺市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年山東省煙臺市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.

2.

3.

4.

5.A.A.1

B.

C.m

D.m2

6.A.A.

B.

C.

D.

7.前饋控制、同期控制和反饋控制劃分的標準是()

A.按照時機、對象和目的劃分B.按照業(yè)務(wù)范圍劃分C.按照控制的順序劃分D.按照控制對象的全面性劃分

8.

9.

10.已知作用在簡支梁上的力F與力偶矩M=Fl,不計桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同

11.

12.設(shè)f(x)在點x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點x0必定可導(dǎo)B.f(x)在點x0必定不可導(dǎo)C.必定存在D.可能不存在

13.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()

A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值

14.

15.點(-1,-2,-5)關(guān)于yOz平面的對稱點是()

A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)

16.

17.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個結(jié)論都不正確18.微分方程y'+x=0的通解()。A.

B.

C.

D.

19.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)20.

21.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量22.A.

B.

C.

D.

23.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要24.

25.設(shè)曲線y=x-ex在點(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-126.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則必定存在一點ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=0

27.

28.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是

A.xo為f(x)的極大值點

B.xo為f(x)的極小值點

C.xo不為f(x)的極值點

D.xo可能不為f(x)的極值點

29.

30.

31.設(shè)f(x)在Xo處不連續(xù),則

A.f(x0)必存在

B.f(x0)必不存在

C.

D.

32.

33.

34.

35.設(shè)平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0則平面π1與π2的位置關(guān)系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合36.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)37.A.A.4πB.3πC.2πD.π

38.

39.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

40.

41.A.A.

B.

C.

D.

42.A.A.0B.1/2C.1D.2

43.

44.

45.

46.

47.設(shè)y=3-x,則y'=()。A.-3-xln3

B.3-xlnx

C.-3-x-1

D.3-x-1

48.A.-3-xln3

B.-3-x/ln3

C.3-x/ln3

D.3-xln3

49.設(shè)y=2^x,則dy等于().

A.x.2x-1dx

B.2x-1dx

C.2xdx

D.2xln2dx

50.A.有一個拐點B.有三個拐點C.有兩個拐點D.無拐點二、填空題(20題)51.設(shè)曲線y=f(x)在點(1,f(1))處的切線平行于x軸,則該切線方程為______.52.53.54.55.設(shè)f(x)=esinx,則=________。56.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為______.57.

58.

59.

60.

61.

62.

63.

64.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則

65.

66.67.

68.

69.微分方程dy+xdx=0的通解y=_____.

70.

三、計算題(20題)71.

72.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?

73.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.74.求微分方程的通解.75.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.76.

77.

78.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.79.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.80.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

81.

82.

83.求微分方程y"-4y'+4y=e-2x的通解.

84.求曲線在點(1,3)處的切線方程.85.86.證明:87.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.88.將f(x)=e-2X展開為x的冪級數(shù).89.當x一0時f(x)與sin2x是等價無窮小量,則90.

四、解答題(10題)91.求微分方程y"-y'-2y=0的通解。

92.

93.

94.

95.

96.

97.

98.

99.將函數(shù)f(x)=lnx展開成(x-1)的冪級數(shù),并指出收斂區(qū)間。

100.計算五、高等數(shù)學(xué)(0題)101.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶六、解答題(0題)102.

參考答案

1.C解析:

2.A

3.D

4.B解析:

5.D本題考查的知識點為重要極限公式或等價無窮小量代換.

解法1

解法2

6.C

7.A解析:根據(jù)時機、對象和目的來劃分,控制可分為前饋控制、同期控制和反饋控制。

8.A解析:

9.A解析:

10.D

11.D

12.C本題考查的知識點為極限、連續(xù)與可導(dǎo)性的關(guān)系.

函數(shù)f(x)在點x0可導(dǎo),則f(x)在點x0必連續(xù).

函數(shù)f(x)在點x0連續(xù),則必定存在.

函數(shù)f(x)在點x0連續(xù),f(x)在點x0不一定可導(dǎo).

函數(shù)f(x)在點x0不連續(xù),則f(x)在點x0必定不可導(dǎo).

這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.

13.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.

14.A

15.D關(guān)于yOz平面對稱的兩點的橫坐標互為相反數(shù),故選D。

16.B

17.D

18.D所給方程為可分離變量方程.

19.C

20.D

21.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

22.D本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

23.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。

24.A

25.C本題考查的知識點為導(dǎo)數(shù)的幾何意義.

由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(0,-1)處切線斜率為0,因此選C.

26.D

27.D

28.A

29.D

30.B

31.B

32.C

33.B

34.D解析:

35.A平面π1的法線向量n1=(2,1,4),平面π2的法線向量n2=(2,-8,1),n1*n1=0。可知兩平面垂直,因此選A。

36.A

37.A

38.D

39.D本題考查的知識點為偏導(dǎo)數(shù)的運算。由z=sin(xy2),知可知應(yīng)選D。

40.B解析:

41.B

42.C本題考查的知識點為函數(shù)連續(xù)性的概念.

43.D

44.C

45.B

46.B解析:

47.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。

48.A由復(fù)合函數(shù)鏈式法則可知,因此選A.

49.D南微分的基本公式可知,因此選D.

50.D本題考查了曲線的拐點的知識點51.y=f(1)本題考查的知識點有兩個:一是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點為(x0,f(x0)),則曲線y=f(x)過該點的切線方程為

y-f(x0)=f'(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為

y=f(1)=0.

本題中考生最常見的錯誤為:將曲線y=f(x)在點(x0,f(x0))處的切線方程寫為

y-f(x0)=f'(x)(x-x0)

而導(dǎo)致錯誤.本例中錯誤地寫為

y-f(1)=f'(x)(x-1).

本例中由于f(x)為抽象函數(shù),一些考生不習慣于寫f(1),有些人誤寫切線方程為

y-1=0.52.

53.54.本題考查的知識點為極限運算.55.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。56.0本題考查的知識點為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.

通常求解的思路為:

先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點x1,…,xk.

比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點.

由y=x3-2x+1,可得

Y'=3x2-2.

令y'=0得y的駐點為,所給駐點皆不在區(qū)間(1,2)內(nèi),且當x∈(1,2)時有

Y'=3x2-2>0.

可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點為x=1,最小值為f(1)=0.

注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.

本題中常見的錯誤是,得到駐點和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯誤地比較

從中確定f(x)在[1,2]上的最小值.則會得到錯誤結(jié)論.

57.

58.

59.

60.

本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).

61.

62.

63.64.本題考查的知識點為二重積分的計算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此

65.(1/2)x2-2x+ln|x|+C66.(-∞,+∞).

本題考查的知識點為求冪級數(shù)的收斂區(qū)間.

若ρ=0,則收斂半徑R=+∞,收斂區(qū)間為(-∞,+∞).

若ρ=+∞,則收斂半徑R=0,級數(shù)僅在點x=0收斂.

67.本題考查的知識點為不定積分的湊微分法.

68.3yx3y-13yx3y-1

解析:69.

70.y+3x2+x

71.

72.需求規(guī)律為Q=100ep-2.25p

∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當P=10時,價格上漲1%需求量減少2.5%

73.

74.75.函數(shù)的定義域為

注意

76.

77.

78.由二重積分物理意義知

79.

80.

81.

82.

83.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論