




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,交于點,切于點,點在上.若,則為()A. B. C. D.2.已知一塊圓心角為的扇形紙板,用它做一個圓錐形的圣誕帽(接縫忽略不計)圓錐的底面圓的直徑是,則這塊扇形紙板的半徑是()A. B. C. D.3.如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm,動點P從點A開始沿邊AB向B以1cm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BC向C以2cm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發,那么經過()秒,四邊形APQC的面積最小.A.1 B.2 C.3 D.44.下面四個圖是同一天四個不同時刻樹的影子,其時間由早到晚的順序為()A.1234 B.4312 C.3421 D.42315.如圖所示的兩個四邊形相似,則α的度數是()A.60° B.75° C.87° D.120°6.如圖,邊長為的正六邊形內接于,則扇形(圖中陰影部分)的面積為()A. B. C. D.7.如圖,在平面直角坐標系中,點M的坐標為M(,2),那么cosα的值是()A. B. C. D.8.下列方程中,沒有實數根的是()A.x2﹣2x﹣3=0 B.(x﹣5)(x+2)=0C.x2﹣x+1=0 D.x2=19.如圖,在中,,,點從點沿邊,勻速運動到點,過點作交于點,線段,,,則能夠反映與之間函數關系的圖象大致是()A. B. C. D.10.已知a是方程x2+3x﹣1=0的根,則代數式a2+3a+2019的值是()A.2020 B.﹣2020 C.2021 D.﹣202111.如果一個一元二次方程的根是x1=x2=1,那么這個方程是A.(x+1)2=0B.(x-1)2=0C.x2=1D.x2+1=012.拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,與x軸的一個交點在(-3,0)和(-2,0)之間,其部分圖象如圖,則下列結論:①4ac-b2<0;②2a-b=0;③a+b+c<0;④點(x1,y1),(x2,y2)在拋物線上,若x1<x2,則y1<y2.正確結論的個數是()A.1 B.2 C.3 D.4二、填空題(每題4分,共24分)13.________.14.(2011?南充)如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠BAC=25°,則∠P=_________度.15.如圖,矩形ABCD中,AB=1,AD=.以A為圓心,AD的長為半徑做弧交BC邊于點E,則圖中的弧長是_______.16.一組正方形按如圖所示的方式放置,其中頂點在軸上,頂點,,,,,,在軸上,已知正方形的邊長為,,則正方形的邊長為__________________.17.如圖,在中,已知依次連接的三邊中點,得,再依次連接的三邊中點得,···,則的周長為_____________________.18.如果將拋物線平移,頂點移到點P(3,-2)的位置,那么所得新拋物線的表達式為___________.三、解答題(共78分)19.(8分)某商品現在的售價為每件60元,每星期可賣出300件.市場調查反映:如調整價格,每降價1元,每星期可多賣出20件.已知商品的進價為每件40元,如何定價才能使利潤最大?這個最大利潤是多少?20.(8分)如圖,在中,,以為直徑作交于點.過點作,垂足為,且交的延長線于點.(1)求證:是的切線;(2)若,,求的長.21.(8分)為爭創文明城市,我市交警部門在全市范圍開展了安全使用電瓶車專項宣傳活動.在活動前和活動后分別隨機抽取了部分使用電瓶車的市民,就騎電瓶車戴安全帽情況進行問卷調查,并將兩次收集的數據制成如下統計圖表.類別人數百分比A686.8%B245b%Ca51%D17717.7%總計c100%根據以上提供的信息解決下列問題:(1)a=,b=c=(2)若我市約有30萬人使用電瓶車,請分別計算活動前和活動后全市騎電瓶車“都不戴”安全帽的人數.(3)經過某十字路口,汽車無法繼續直行只可左轉或右轉,電動車不受限制,現有一輛汽車和一輛電動車同時到達該路口,用畫樹狀圖或列表的方法求汽車和電動車都向左轉的概率.22.(10分)如圖,在平面直角坐標系中,直線AB與x軸交于點B,與y軸交于點A,直線AB與反比例函數y=(m>0)在第一象限的圖象交于點C、點D,其中點C的坐標為(1,8),點D的坐標為(4,n).(1)分別求m、n的值;(2)連接OD,求△ADO的面積.23.(10分)數學活動課上老師帶領全班學生測量旗桿高度.如圖垂直于地面的旗桿頂端A垂下一根繩子.小明同學將繩子拉直釘在地上,繩子末端恰好在點C處且測得旗桿頂端A的仰角為75°;小亮同學接著拿起繩子末端向前至D處,拉直繩子,此時測得繩子末端E距離地面1.5m且與旗桿頂端A的仰角為60°根據兩位同學的測量數據,求旗桿AB的高度.(參考數據:sin75°≈0.97,cos75°≈0.26,sin60°≈0.87,結果精確到1米)24.(10分)如圖,△ABC在坐標平面內,三個頂點的坐標分別為A(0,4),B(2,2),C(4,6)(正方形網格中,每個小正方形的邊長為1)(1)畫出△ABC向下平移5個單位得到的△A1B1C1,并寫出點B1的坐標;(2)以點O為位似中心,在第三象限畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為1:2,直接寫出點C2的坐標和△A2B2C2的面積.25.(12分)如圖,已知一次函數與反比例函數的圖像相交于點,與軸相交于點.(1)求的值和的值以及點的坐標;(2)觀察反比例函數的圖像,當時,請直接寫出自變量的取值范圍;(3)以為邊作菱形,使點在軸正半軸上,點在第一象限,求點的坐標;(4)在y軸上是否存在點,使的值最小?若存在,請求出點的坐標;若不存在,請說明理由.26.如圖,在平面直角坐標系中,函數的圖象與函數()的圖象相交于點,并與軸交于點.點是線段上一點,與的面積比為2:1.(1),;(2)求點的坐標;(1)若將繞點順時針旋轉,得到,其中的對應點是,的對應點是,當點落在軸正半軸上,判斷點是否落在函數()的圖象上,并說明理由.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據切線的性質得到∠ODA=90,根據直角三角形的性質求出∠DOA,根據圓周角定理計算即可.【詳解】∵AD切⊙O于點D,
∴OD⊥AD,
∴∠ODA=90,
∵∠A=40,
∴∠DOA=90-40=50,
由圓周角定理得,∠BCD=∠DOA=25°,
故選:B.【點睛】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.2、B【分析】利用底面周長=展開圖的弧長可得【詳解】設這個扇形鐵皮的半徑為rcm,由題意得解得r=1.故這個扇形鐵皮的半徑為1cm,故選:B.【點睛】本題考查了圓錐的計算,解答本題的關鍵是確定圓錐的底面周長=展開圖的弧長這個等量關系,然后由扇形的弧長公式和圓的周長公式求值.3、C【分析】根據等量關系“四邊形APQC的面積=三角形ABC的面積-三角形PBQ的面積”列出函數關系求最小值.【詳解】解:設P、Q同時出發后經過的時間為ts,四邊形APQC的面積為Scm2,則有:S=S△ABC-S△PBQ=×12×6-(6-t)×2t=t2-6t+36=(t-3)2+1.∴當t=3s時,S取得最小值.故選C.【點睛】本題考查了函數關系式的求法以及最值的求法,解題的關鍵是根據題意列出函數關系式,并根據二次函數的性質求出最值.4、B【解析】由于太陽早上從東方升起,則早上樹的影子向西;傍晚太陽在西邊落下,此時樹的影子向東,于是可判斷四個時刻的時間順序.【詳解】解:時間由早到晚的順序為1.
故選B.【點睛】本題考查了平行投影:由平行光線形成的投影是平行投影,如物體在太陽光的照射下形成的影子就是平行投影.5、C【解析】根據相似多邊形性質:對應角相等.【詳解】由已知可得:α的度數是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關鍵點:理解相似多邊形性質.6、B【分析】根據已知條件可得出,圓的半徑為3,再根據扇形的面積公式()求解即可.【詳解】解:正六邊形內接于,,,是等邊三角形,,扇形的面積,故選:.【點睛】本題考查的知識點求扇形的面積,熟記面積公式并通過題目找出圓心角的度數與圓的半徑是解題的關鍵7、D【分析】如圖,作MH⊥x軸于H.利用勾股定理求出OM,即可解決問題.【詳解】解:如圖,作MH⊥x軸于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故選:D.【點睛】本題考查解直角三角形的應用,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.8、C【分析】分別計算出各選項中方程的判別式或方程的根,從而做出判斷.【詳解】解:A.方程x2﹣2x﹣3=0中△=(﹣2)2﹣4×1×(﹣3)=16>0,有兩個不相等的實數根,不符合題意;B.方程(x﹣5)(x+2)=0的兩根分別為x1=5,x2=﹣2,不符合題意;C.方程x2﹣x+1=0中△=(﹣1)2﹣4×1×1=﹣3<0,沒有實數根,符合題意;D.方程x2=1的兩根分別為x1=1,x2=﹣1,不符合題意;故選:C.【點睛】本題考查了根的判別式,牢記“當△<0時,方程無實數根”是解題的關鍵.9、D【分析】分兩種情況:①當P點在OA上時,即2≤x≤2時;②當P點在AB上時,即2<x≤1時,求出這兩種情況下的PC長,則y=PC?OC的函數式可用x表示出來,對照選項即可判斷.【詳解】解:∵△AOB是等腰直角三角形,AB=,∴OB=1.①當P點在OA上時,即2≤x≤2時,PC=OC=x,S△POC=y=PC?OC=x2,是開口向上的拋物線,當x=2時,y=2;OC=x,則BC=1-x,PC=BC=1-x,S△POC=y=PC?OC=x(1-x)=-x2+2x,是開口向下的拋物線,當x=1時,y=2.綜上所述,D答案符合運動過程中y與x的函數關系式.故選:D.【點睛】本題主要考查了動點問題的函數圖象,解決這類問題要先進行全面分析,根據圖形變化特征或動點運動的背景變化進行分類討論,然后動中找靜,寫出對應的函數式.10、A【分析】根據一元二次方程的解的定義,將a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【詳解】解:根據題意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故選:A.【點睛】此題考查的是一元二次方程的解,掌握一元二次方程解的定義是解決此題的關鍵11、B【分析】分別求出四個選項中每一個方程的根,即可判斷求解.【詳解】A、(x+1)2=0的根是:x1=x2=-1,不符合題意;B、(x-1)2=0的根是:x1=x2=-1,符合題意;C、x2=1的根是:x1=1,x2=-1,不符合題意;D、x2+1=0沒有實數根,不符合題意;故選B.12、C【分析】根據二次函數圖像與b2-4ac的關系、對稱軸公式、點的坐標及增減性逐一判斷即可.【詳解】解:①由圖可知,將拋物線補全,拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點∴b2-4ac>0∴4ac-b2<0,故①正確;②∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1∴解得:∴2a-b=0,故②正確;③∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,與x軸的一個交點在(-3,0)和(-2,0)之間,∴此拋物線與x軸的另一個交點在(0,0)和(1,0)之間∵在對稱軸的右側,函數y隨x增大而減小∴當x=1時,y<0,∴將x=1代入解析式中,得:y=a+b+c<0故③正確;④若點(x1,y1),(x2,y2)在對稱軸右側時,函數y隨x增大而減小即若x1<x2,則y1>y2故④錯誤;故選C.【點睛】此題考查的是二次函數圖像及性質,掌握二次函數圖像及性質和各系數之間的關系是解決此題的關鍵.二、填空題(每題4分,共24分)13、【分析】先求特殊角的三角函數值再計算即可.【詳解】解:原式=×=.
故答案為.【點睛】本題考查的是特殊角的三角函數值,屬較簡單題目.14、50【解析】∵PA,PB是⊙O是切線,A,B為切點,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案為:50°.15、π【分析】根據題意可得AD=AE=,則可以求出sin∠AEB,可以判斷出可判斷出∠AEB=45°,進一步求解∠DAE=∠AEB=45°,代入弧長得到計算公式可得出弧DE的長度.【詳解】解:∵AD半徑畫弧交BC邊于點E,AD=
∴AD=AE=,
又∵AB=1,
∴∴∠AEB=45°,∵四邊形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,
故可得弧DC的長度為==π,
故答案為:π.【點睛】此題考查了弧長的計算公式,解答本題的關鍵是求出∠DAE的度數,要求我們熟練掌握弧長的計算公式及解直角三角形的知識.16、【分析】由正方形的邊長為,,,得D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,根據三角函數的定義和正方形的性質,即可得到答案.【詳解】∵正方形的邊長為,,,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1=,B2C2==,同理可得:B3C3=,以此類推:正方形的邊長為:,∴正方形的邊長為:.故答案是:.【點睛】本題主要考查正方形的性質和三角函數的定義綜合,掌握用三角函數的定義解直角三角形,是解題的關鍵.17、【分析】根據三角形的中位線定理得:A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,則△A2B2C2的周長等于△A1B1C1的周長的一半,以此類推可求出△A5B5C5的周長為△A1B1C1的周長的.【詳解】解:∵A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,∴△A5B5C5的周長為△A1B1C1的周長的,∴△A5B5C5的周長為(7+4+5)×=1.故答案為1.【點睛】本題主要考查了三角形的中位線定理,靈活運用三角形的中位線定理并歸納規律是解答本題的關鍵.18、【解析】拋物線y=?2x2平移,使頂點移到點P(3,-2)的位置,所得新拋物線的表達式為y=?2(x-3)2-2.故答案為y=?2(x-3)2-2.三、解答題(共78分)19、定價為57.5元時,所獲利潤最大,最大利潤為6125元.【分析】設所獲利潤為元,每件降價元,先求出降價后的每件利潤和銷量,再根據“利潤=每件利潤銷量”列出等式,然后根據二次函數的性質求解即可.【詳解】設所獲利潤為元,每件降價元則降價后的每件利潤為元,每星期銷量為件由利潤公式得:整理得:由二次函數的性質可知,當時,y隨x的增大而增大;當時,y隨x的增大而減小故當時,y取得最大值,最大值為6125元即定價為:元時,所獲利潤最大,最大利潤為6125元.【點睛】本題考查了二次函數的應用,依據題意正確得出函數的關系式是解題關鍵.20、(1)見解析;(2)BD長為1.【分析】(1)連接OD,AD,根據等腰三角形三線合一得BD=CD,根據三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結論;
(2)根據等腰三角形三線合一的性質證得∠BAD=∠BAC=30°,由30°的直角三角形的性質即可求得BD.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△BAC的中位線,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,∴BD=AB=×10=1,即BD長為1.【點睛】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、等腰三角形的性質,圓的切線的判定,30°的直角三角形的性質,掌握本題的輔助線的作法是解題的關鍵.21、(1)10,24.5,1000;(2)活動前5.31萬人,活動后2.67萬人;(3)p=【分析】(1)用表格中的A組的人數除以其百分比,得到總人數c,運用“百分比=人數÷總人數”及其變形公式即可求出a、b的值;(2)先把活動后各組人數相加,求出活動后調查的樣本容量,再運用“百分比=人數÷總人數”求出活動前和活動后全市騎電瓶車“都不戴”安全帽的百分比,再用樣本估計總體;(3)先畫樹狀圖展示所有6種等可能的結果數,再求汽車和電動車都向左轉的概率.【詳解】(1)∵,∴,,∴;(2)∵活動后調查了896+702+224+178=2000人,“都不戴”安全帽的占,∴由此估計活動后全市騎電瓶車“都不戴”安全帽的總人數:30萬=2.67(萬人);同理:估計活動前全市騎電瓶車“都不戴”安全帽的總人數:30萬萬人;答:估計活動前和活動后全市騎電瓶車“都不戴”安全帽的總人數分別為5.31萬人和2.67萬人;(3)畫樹狀圖:∴共有6種等可能的結果數,汽車和電動車都向左轉的只有1種,∴汽車和電動車都向左轉的概率為.【點睛】本題綜合考查了概率統計內容,讀懂統計圖,了解用樣本估計總體,掌握概率公式是解決問題的關鍵.22、(1)m=8,n=1.(1)10【分析】(1)把代入解析式可求得m的值,再把點D(4,n)代入即可求得答案;(1)用待定系數法求得直線AB的解析式,繼而求得點A的坐標,再利用三角形面積公式即可求得答案.【詳解】(1)∵反比例函數(>0)在第一象限的圖象交于點,∴,∴,∴函數解析式為,將代入得,.(1)設直線AB的解析式為,由題意得,解得:,∴直線AB的函數解析式為,令,則,∴,∴.【點睛】本題考查了用待定法求函數解析式及三角形面積公式,熟練掌握待定法求函數解析式是解題的關鍵.23、15米.【分析】根據題意分別表示出AB、AF的長,進而得出等式求出答案.【詳解】過E作EF⊥AB于F,設AC=AE=∵AB⊥CD,ED⊥CD,∴四邊形FBDE為矩形,∴,在中∵,∴,∴AB=AF+BF,在中,∵,∴,∴,,∴(米).∴旗桿AB的高度為米.【點睛】本題主要考查了解直角三角形的應用,正確應用銳角三角函數關系是解題關鍵.24、(1)見解析,(2,﹣3);(2)見解析,1.1.【分析】(1)直接利用平移的性質得出對應點位置進而得出答案;(2)直接利用位似圖形的性質得出對應點位置進而結合三角形面積求法得出答案.【詳解】解:(1)如圖所示:△A1B1C1,即為所求;點B1的坐標為:(2,﹣3);(2)如圖所示:△A2B2C2,即為所求;點C2的坐標為:(﹣2,﹣3);△A2B2C2的面積為:4﹣×1×1﹣×1×2﹣×1×2=1.1..【點睛】此題主要考查了平移變換以及位似變換,正確得出對應點位置是解題關鍵.25、(1)n=3,k=1,點B的坐標為(2,3);(2)x≤﹣2或x>3;(3)點D的坐標為(2+,3);(2)存在,P(3,1).【分析】(1)把點A(2,n)代入一次函數中可求得n的值,從而求出一次函數的解析式,于是可得B的坐標;再把點A的坐標代入反比例函數中,可得到k的值;
(2)觀察反比例函數圖象即可得到當y≥-3時,自變量x的取值范圍.(3)先求出菱形的邊長,然后利用平移的性質可得點D的坐標;
(2)作點B關于y軸的對稱點Q,連接AQ交y軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西省晉源區第七小學2025屆三下數學期末學業質量監測試題含解析
- 重慶醫科大學《建筑師職業基礎(含務實與法規)》2023-2024學年第二學期期末試卷
- 山東省聊城莘縣聯考2025屆初三下學期中考試英語試題含答案
- 伊寧縣2025屆五下數學期末調研模擬試題含答案
- 上海市第八中學2025屆中考預測金卷:數學試題(浙江卷)含解析
- 西南科技大學《電視綜藝欄目編導》2023-2024學年第二學期期末試卷
- 接收發展對象大會流程
- 2025數據中心服務器采購與維護工程合同
- 《2025高速數據傳輸接入服務合同》
- 2025設備租賃合同「樣式」
- 氣管插管術培訓課件
- 國家開放大學畢業生登記表-
- 電腦故障診斷卡說明書
- 企業重組所得稅特殊性處理實務(深圳市稅務局)課件
- 2022年7月2日江蘇省事業單位招聘考試《綜合知識和能力素質》(管理崗客觀題)及答案
- 瓦斯超限事故專項應急預案
- 苗木質量保證措施
- 【公司利潤質量研究國內外文獻綜述3400字】
- 水利工程分部分項劃分表
- 學生班級衛生值日表模板下載
- 責任商業聯盟RBA(CSR)知識培訓
評論
0/150
提交評論