人教版數(shù)學(xué)課件《球面上的距離》1_第1頁(yè)
人教版數(shù)學(xué)課件《球面上的距離》1_第2頁(yè)
人教版數(shù)學(xué)課件《球面上的距離》1_第3頁(yè)
人教版數(shù)學(xué)課件《球面上的距離》1_第4頁(yè)
人教版數(shù)學(xué)課件《球面上的距離》1_第5頁(yè)
已閱讀5頁(yè),還剩39頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

球面上的距離球面上的距離1上一講中,運(yùn)用歐式幾何的方法,研究了球面的一些性質(zhì).這次課從球面上的距離和角入手,進(jìn)入球面幾何的學(xué)習(xí).舊知回顧上一講中,運(yùn)用歐式幾何的方法,研究了球面的一2導(dǎo)入新課歐式幾何中,用距離和角度(方位)來(lái)刻畫(huà)位置間的關(guān)系,對(duì)于球面的學(xué)習(xí),從球面上的距離和角兩個(gè)基本概念開(kāi)始.導(dǎo)入新課歐式幾何中,用距離和角度(方位)來(lái)刻3球面上的距離和角球面上的距離和角4一、球面上的距離我們知道,在平面上,經(jīng)過(guò)兩點(diǎn)可以連一條直線,且只可連一條直線.平面上兩點(diǎn)之間的所有連線中,線段最短,這條線段的長(zhǎng)度叫做兩點(diǎn)之間的距離.一、球面上的距離我們知道,在平面上,經(jīng)過(guò)兩點(diǎn)5平面上的兩條直線有兩種位置關(guān)系:平行和相交,如果相交,那么只有一個(gè)交點(diǎn).平面上的直線可以無(wú)限延長(zhǎng)等等.這些都是平面上直線的性質(zhì).在平面上可以畫(huà)出直線,但球面是一個(gè)曲面,球面上的線是彎曲的,不存在直線.平面上的兩條直線有兩種位置關(guān)系:平行和相交,6球面上有沒(méi)有某種曲線可以“扮演”平面上直線的角色呢?連結(jié)球面上任意兩點(diǎn)有無(wú)數(shù)條曲線,而且它們的長(zhǎng)短不一,其中是否存在一條最短的曲線?探究球面上有沒(méi)有某種曲線可以“扮演”平面上直線的7如下圖,一架飛機(jī)從北京首都國(guó)際機(jī)場(chǎng)起飛,目的地是美國(guó)紐約肯尼迪國(guó)際機(jī)場(chǎng),北京與紐約大致都在北緯40°上,如果不考慮其他因素,飛機(jī)如何飛行才能使航程最短?如下圖,一架飛機(jī)從北京首都國(guó)際機(jī)場(chǎng)起飛,目的8A

BBOAB、A兩點(diǎn)的距離是多少?ABBOAB、A兩點(diǎn)的距離是多少?9NBO北京S舊金山O′T北南NBO北京S舊金山O′T北南10如上圖,我們用點(diǎn)B代表北京、點(diǎn)N代表紐約,點(diǎn)O表示球心.用經(jīng)過(guò)B點(diǎn)、N點(diǎn)、O點(diǎn)的平面去截球面,得到一個(gè)大圓(由于平面過(guò)球心),那么B點(diǎn)、N點(diǎn)就把這個(gè)大圓分成兩段圓弧,長(zhǎng)的一段叫優(yōu)弧,短的一段叫劣?。踊〉拈L(zhǎng)度就是球面上兩點(diǎn)間的最短距離,簡(jiǎn)稱之為球面上兩點(diǎn)間的距離。如上圖,我們用點(diǎn)B代表北京、點(diǎn)N代表紐約,點(diǎn)11再回到上圖,很容易得到,飛機(jī)沿著大圓從北京向北經(jīng)極地飛行到達(dá)紐約,航程最短,它比飛機(jī)向東沿北緯40°的小圓,經(jīng)舊金山到達(dá)紐約的航程要短.再回到上圖,很容易得到,飛機(jī)沿著大圓從北京向12如果我們把圖中的大圓弧和小圓弧畫(huà)到同一個(gè)平面,如下圖.TSBNOO′r′r如果我們把圖中的大圓弧和小圓弧畫(huà)到同一個(gè)平面13觀察圖形可知,以O(shè)為圓心,OB為半徑的圓弧

,比以點(diǎn)O為圓心,OB為半徑的圓弧要短.也就是說(shuō),平面上經(jīng)過(guò)任意兩點(diǎn)的劣弧中,半徑越大,劣弧越短.因此過(guò)球面上兩點(diǎn)一定可以連一條且只可以連一條大圓弧——劣?。^察圖形可知,以O(shè)為圓心,OB為半徑的圓弧14例假設(shè)地球的半徑為R,如圖,在北緯45°的緯線上有A,B兩點(diǎn),且所對(duì)的圓心角∠AO′B=90°,求球面上A,B兩點(diǎn)間的距離.ABOO′例假設(shè)地球的半徑為R,如圖,在北緯4515ABOO′解:如圖,連結(jié)OA,OB,AB,OO′.由緯度的意義,可得同理,因?yàn)椤螦O′B=90°.所以又因?yàn)镺A=OB=R,所以∠AOB=60°,因此,球面上A,B兩點(diǎn)間的距離等于ABOO′解:如圖,連結(jié)OA,OB,AB,OO′.由緯度的意16由于不在同一條直線上的三點(diǎn)唯一確定一個(gè)圓,因此過(guò)球面上兩點(diǎn)必可連一條大圓弧—劣弧.這類似平面上經(jīng)過(guò)兩點(diǎn)可以連一條直線,且只可能連一條直線;平面上兩點(diǎn)之間的最短路徑是線段.因此,球面上的大圓可以“扮演”平面上直線的角色.由于不在同一條直線上的三點(diǎn)唯一確定一個(gè)圓,因此17盡管球面上的大圓可以“扮演”平面上直線的角色,但是兩者之間也有很大的不同.平面上的兩條直線可以相交:只有一個(gè)交點(diǎn);也可以不相交(平行):沒(méi)有交點(diǎn).但是球面上任意兩個(gè)大圓(類似平面上的兩條直線)必定相交,且有兩個(gè)交點(diǎn).盡管球面上的大圓可以“扮演”平面上直線的角色18思考為什么兩個(gè)大圓必定相交,且有兩個(gè)交點(diǎn)?AA′O思考為什么兩個(gè)大圓必定相交,且有兩個(gè)交點(diǎn)?AA′O19如上圖,因?yàn)榍蛎嫔系膬蓚€(gè)大圓所在的平面都經(jīng)過(guò)球心O.所以這兩個(gè)大圓所在的平面有一個(gè)公共點(diǎn),因此這兩個(gè)平面必有一條過(guò)球心O的相交直線,這條相交直線顯然是球面的直徑所在的直線,兩個(gè)大圓的交點(diǎn)是這條直徑的兩個(gè)端點(diǎn)A,A′.我們把球的直徑的兩個(gè)端點(diǎn)A,A′稱為對(duì)徑點(diǎn).因此,兩個(gè)大圓相交于對(duì)徑點(diǎn)A,A′.如上圖,因?yàn)榍蛎嫔系膬蓚€(gè)大圓所在的平面都經(jīng)過(guò)20謝謝謝謝211.交代故事發(fā)生的時(shí)間、環(huán)境;描繪出一幅令人恐懼的畫(huà)面,渲染緊張氣氛。側(cè)面表現(xiàn)人物恐懼痛苦的內(nèi)心世界,與他所向往的溫馨的家庭生活環(huán)境形成鮮明對(duì)比。2.但是,情況終于改變了。一些急欲挽救中國(guó)的社會(huì)改革家發(fā)現(xiàn),舊時(shí)代的主流意識(shí)形態(tài)必須改變,而那些數(shù)千年來(lái)深入民間社會(huì)的精神活力則應(yīng)該調(diào)動(dòng)起來(lái)。因此,大家又重新驚喜地發(fā)現(xiàn)了墨子。3.中國(guó)作家結(jié)識(shí)雨果已經(jīng)近一百年。當(dāng)偉大的雨果以其壯麗風(fēng)采開(kāi)辟著一個(gè)理想的正義世界的時(shí)候,當(dāng)他以浪漫主義的狂飆之勢(shì)席卷風(fēng)云變幻的歐羅巴的時(shí)候,中國(guó)還是一只沉睡的雄獅,尚未向世界打開(kāi)廣泛的視聽(tīng)。

4.意義的追求是每一章散文詩(shī)必須堅(jiān)持的,是她的生命線。沒(méi)有任何意義的散文詩(shī),決非好作品。意義和審美是一體化的存在,只有在審美的前提下,在足以強(qiáng)化審美而不是削弱審美的前提下,才能實(shí)現(xiàn)意義的追求。5.傳統(tǒng)的經(jīng)濟(jì)理論不考慮經(jīng)濟(jì)系統(tǒng)和生態(tài)系統(tǒng)的物質(zhì)和能量交換是基于以下的假設(shè):生態(tài)系統(tǒng)的物質(zhì)和能量是取之不盡、用之不竭的。6.這一前提假設(shè)在經(jīng)濟(jì)系統(tǒng)相對(duì)于生態(tài)系統(tǒng)較小時(shí),即世界是一個(gè)“空的世界”時(shí)尚能滿足,但在經(jīng)濟(jì)系統(tǒng)快速增長(zhǎng),世界逐漸從“空的世界”變成“滿的世界”后,這一假設(shè)就很難滿足了。7.當(dāng)人們不能改變客觀的社會(huì)環(huán)境時(shí),要避免應(yīng)激性疾病的發(fā)生就應(yīng)該不斷降低心理壓力。降低心理壓力的方法是多種多樣的,正確認(rèn)識(shí)事物,獲得積極的情感體驗(yàn)是一個(gè)重要的方法。8.心理學(xué)上有一種認(rèn)識(shí)——評(píng)估學(xué)說(shuō),即個(gè)體對(duì)事物有了認(rèn)識(shí),就會(huì)利用頭腦中的舊經(jīng)驗(yàn)來(lái)解釋新輸入的信息,進(jìn)行評(píng)估,于是產(chǎn)生情緒體驗(yàn)。而個(gè)體對(duì)事物究竟體驗(yàn)為積極的情緒還是消極的情緒,在于怎樣認(rèn)識(shí)事物。9.迫于現(xiàn)實(shí)社會(huì)生存的巨大綜合壓力和人類因物質(zhì)文明進(jìn)步而帶來(lái)的精神困惑,當(dāng)代詩(shī)歌的內(nèi)容越來(lái)越局限于私人性的東西,正日愈失去處理重大社會(huì)題材的藝術(shù)能力,這就使得它日愈減少獲得公眾關(guān)注的機(jī)會(huì),而只有在少數(shù)未被現(xiàn)代社會(huì)物質(zhì)化的心靈當(dāng)中獲得知音;1.交代故事發(fā)生的時(shí)間、環(huán)境;描繪出一幅令人恐懼的畫(huà)面,渲染22球面上的距離球面上的距離23上一講中,運(yùn)用歐式幾何的方法,研究了球面的一些性質(zhì).這次課從球面上的距離和角入手,進(jìn)入球面幾何的學(xué)習(xí).舊知回顧上一講中,運(yùn)用歐式幾何的方法,研究了球面的一24導(dǎo)入新課歐式幾何中,用距離和角度(方位)來(lái)刻畫(huà)位置間的關(guān)系,對(duì)于球面的學(xué)習(xí),從球面上的距離和角兩個(gè)基本概念開(kāi)始.導(dǎo)入新課歐式幾何中,用距離和角度(方位)來(lái)刻25球面上的距離和角球面上的距離和角26一、球面上的距離我們知道,在平面上,經(jīng)過(guò)兩點(diǎn)可以連一條直線,且只可連一條直線.平面上兩點(diǎn)之間的所有連線中,線段最短,這條線段的長(zhǎng)度叫做兩點(diǎn)之間的距離.一、球面上的距離我們知道,在平面上,經(jīng)過(guò)兩點(diǎn)27平面上的兩條直線有兩種位置關(guān)系:平行和相交,如果相交,那么只有一個(gè)交點(diǎn).平面上的直線可以無(wú)限延長(zhǎng)等等.這些都是平面上直線的性質(zhì).在平面上可以畫(huà)出直線,但球面是一個(gè)曲面,球面上的線是彎曲的,不存在直線.平面上的兩條直線有兩種位置關(guān)系:平行和相交,28球面上有沒(méi)有某種曲線可以“扮演”平面上直線的角色呢?連結(jié)球面上任意兩點(diǎn)有無(wú)數(shù)條曲線,而且它們的長(zhǎng)短不一,其中是否存在一條最短的曲線?探究球面上有沒(méi)有某種曲線可以“扮演”平面上直線的29如下圖,一架飛機(jī)從北京首都國(guó)際機(jī)場(chǎng)起飛,目的地是美國(guó)紐約肯尼迪國(guó)際機(jī)場(chǎng),北京與紐約大致都在北緯40°上,如果不考慮其他因素,飛機(jī)如何飛行才能使航程最短?如下圖,一架飛機(jī)從北京首都國(guó)際機(jī)場(chǎng)起飛,目的30A

BBOAB、A兩點(diǎn)的距離是多少?ABBOAB、A兩點(diǎn)的距離是多少?31NBO北京S舊金山O′T北南NBO北京S舊金山O′T北南32如上圖,我們用點(diǎn)B代表北京、點(diǎn)N代表紐約,點(diǎn)O表示球心.用經(jīng)過(guò)B點(diǎn)、N點(diǎn)、O點(diǎn)的平面去截球面,得到一個(gè)大圓(由于平面過(guò)球心),那么B點(diǎn)、N點(diǎn)就把這個(gè)大圓分成兩段圓弧,長(zhǎng)的一段叫優(yōu)弧,短的一段叫劣?。踊〉拈L(zhǎng)度就是球面上兩點(diǎn)間的最短距離,簡(jiǎn)稱之為球面上兩點(diǎn)間的距離。如上圖,我們用點(diǎn)B代表北京、點(diǎn)N代表紐約,點(diǎn)33再回到上圖,很容易得到,飛機(jī)沿著大圓從北京向北經(jīng)極地飛行到達(dá)紐約,航程最短,它比飛機(jī)向東沿北緯40°的小圓,經(jīng)舊金山到達(dá)紐約的航程要短.再回到上圖,很容易得到,飛機(jī)沿著大圓從北京向34如果我們把圖中的大圓弧和小圓弧畫(huà)到同一個(gè)平面,如下圖.TSBNOO′r′r如果我們把圖中的大圓弧和小圓弧畫(huà)到同一個(gè)平面35觀察圖形可知,以O(shè)為圓心,OB為半徑的圓弧

,比以點(diǎn)O為圓心,OB為半徑的圓弧要短.也就是說(shuō),平面上經(jīng)過(guò)任意兩點(diǎn)的劣弧中,半徑越大,劣弧越短.因此過(guò)球面上兩點(diǎn)一定可以連一條且只可以連一條大圓弧——劣?。^察圖形可知,以O(shè)為圓心,OB為半徑的圓弧36例假設(shè)地球的半徑為R,如圖,在北緯45°的緯線上有A,B兩點(diǎn),且所對(duì)的圓心角∠AO′B=90°,求球面上A,B兩點(diǎn)間的距離.ABOO′例假設(shè)地球的半徑為R,如圖,在北緯4537ABOO′解:如圖,連結(jié)OA,OB,AB,OO′.由緯度的意義,可得同理,因?yàn)椤螦O′B=90°.所以又因?yàn)镺A=OB=R,所以∠AOB=60°,因此,球面上A,B兩點(diǎn)間的距離等于ABOO′解:如圖,連結(jié)OA,OB,AB,OO′.由緯度的意38由于不在同一條直線上的三點(diǎn)唯一確定一個(gè)圓,因此過(guò)球面上兩點(diǎn)必可連一條大圓弧—劣?。@類似平面上經(jīng)過(guò)兩點(diǎn)可以連一條直線,且只可能連一條直線;平面上兩點(diǎn)之間的最短路徑是線段.因此,球面上的大圓可以“扮演”平面上直線的角色.由于不在同一條直線上的三點(diǎn)唯一確定一個(gè)圓,因此39盡管球面上的大圓可以“扮演”平面上直線的角色,但是兩者之間也有很大的不同.平面上的兩條直線可以相交:只有一個(gè)交點(diǎn);也可以不相交(平行):沒(méi)有交點(diǎn).但是球面上任意兩個(gè)大圓(類似平面上的兩條直線)必定相交,且有兩個(gè)交點(diǎn).盡管球面上的大圓可以“扮演”平面上直線的角色40思考為什么兩個(gè)大圓必定相交,且有兩個(gè)交點(diǎn)?AA′O思考為什么兩個(gè)大圓必定相交,且有兩個(gè)交點(diǎn)?AA′O41如上圖,因?yàn)榍蛎嫔系膬蓚€(gè)大圓所在的平面都經(jīng)過(guò)球心O.所以這兩個(gè)大圓所在的平面有一個(gè)公共點(diǎn),因此這兩個(gè)平面必有一條過(guò)球心O的相交直線,這條相交直線顯然是球面的直徑所在的直線,兩個(gè)大圓的交點(diǎn)是這條直徑的兩個(gè)端點(diǎn)A,A′.我們把球的直徑的兩個(gè)端點(diǎn)A,A′稱為對(duì)徑點(diǎn).因此,兩個(gè)大圓相交于對(duì)徑點(diǎn)A,A′.如上圖,因?yàn)榍蛎嫔系膬蓚€(gè)大圓所在的平面都經(jīng)過(guò)42謝謝謝謝431.交代故事發(fā)生的時(shí)間、環(huán)境;描繪出一幅令人恐懼的畫(huà)面,渲染緊張氣氛。側(cè)面表現(xiàn)人物恐懼痛苦的內(nèi)心世界,與他所向往的溫馨的家庭生活環(huán)境形成鮮明對(duì)比。2.但是,情況終于改變了。一些急欲挽救中國(guó)的社會(huì)改革家發(fā)現(xiàn),舊時(shí)代的主流意識(shí)形態(tài)必須改變,而那些數(shù)千年來(lái)深入民間社會(huì)的精神活力則應(yīng)該調(diào)動(dòng)起來(lái)。因此,大家又重新驚喜地發(fā)現(xiàn)了墨子。3.中國(guó)作家結(jié)識(shí)雨果已經(jīng)近一百年。當(dāng)偉大的雨果以其壯麗風(fēng)采開(kāi)辟著一個(gè)理想的正義世界的時(shí)候,當(dāng)他以浪漫主義的狂飆之

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論