2023屆湖南省株洲市攸縣中考數學押題卷含答案解析_第1頁
2023屆湖南省株洲市攸縣中考數學押題卷含答案解析_第2頁
2023屆湖南省株洲市攸縣中考數學押題卷含答案解析_第3頁
2023屆湖南省株洲市攸縣中考數學押題卷含答案解析_第4頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆湖南省株洲市攸縣中考數學押題卷注意事項1.考生要認真填寫考場號和座位序號。2.測試卷所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.觀察下列圖中所示的一系列圖形,它們是按一定規律排列的,依照此規律,第2019個圖形共有()個〇.A.6055 B.6056 C.6057 D.60582.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數是()A.90° B.60° C.45° D.30°3.(2011貴州安順,4,3分)我市某一周的最高氣溫統計如下表:最高氣溫(℃)

25

26

27

28

天數

1

1

2

3

則這組數據的中位數與眾數分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,274.下列計算正確的是()A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1C.2x2÷3x2=x2 D.2x2?3x2=6x45.化簡的結果是()A.1 B. C. D.6.下列調查中適宜采用抽樣方式的是()A.了解某班每個學生家庭用電數量B.調查你所在學校數學教師的年齡狀況C.調查神舟飛船各零件的質量D.調查一批顯像管的使用壽命7.按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數是()①△ABC與△DEF是位似圖形

②△ABC與△DEF是相似圖形③△ABC與△DEF的周長比為1:2

④△ABC與△DEF的面積比為4:1.A.1 B.2 C.3 D.48.已知二次函數的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<09.如圖,將一塊三角板的直角頂點放在直尺的一邊上,當∠2=38°時,∠1=()A.52° B.38° C.42° D.60°10.下列命題中假命題是()A.正六邊形的外角和等于 B.位似圖形必定相似C.樣本方差越大,數據波動越小 D.方程無實數根二、填空題(本大題共6個小題,每小題3分,共18分)11.點P的坐標是(a,b),從-2,-1,0,1,2這五個數中任取一個數作為a的值,再從余下的四個數中任取一個數作為b的值,則點P(a,b)在平面直角坐標系中第二象限內的概率是.12.如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=_______度.13.對于任意實數m、n,定義一種運算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運算,例如:3※5=3×5﹣3﹣5+3=1.請根據上述定義解決問題:若a<2※x<7,且解集中有兩個整數解,則a的取值范圍是_____.14.如圖,sin∠C,長度為2的線段ED在射線CF上滑動,點B在射線CA上,且BC=5,則△BDE周長的最小值為______.15.對于任意實數a、b,定義一種運算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據上述的定義解決問題:若不等式3※x<1,則不等式的正整數解是_____.16.若二次函數y=-x2-4x+k的最大值是9,則k=______.三、解答題(共8題,共72分)17.(8分)有這樣一個問題:探究函數的圖象與性質.小懷根據學習函數的經驗,對函數的圖象與性質進行了探究.下面是小懷的探究過程,請補充完成:(1)函數的自變量x的取值范圍是;(2)列出y與x的幾組對應值.請直接寫出m的值,m=;(3)請在平面直角坐標系xOy中,描出表中各對對應值為坐標的點,并畫出該函數的圖象;(4)結合函數的圖象,寫出函數的一條性質.18.(8分)已知:如圖所示,拋物線y=﹣x2+bx+c與x軸的兩個交點分別為A(1,0),B(3,0)(1)求拋物線的表達式;(2)設點P在該拋物線上滑動,且滿足條件S△PAB=1的點P有幾個?并求出所有點P的坐標.19.(8分)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.20.(8分)如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:①僅用無刻度直尺,②保留必要的畫圖痕跡.在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;在圖2中畫出線段AB的垂直平分線.21.(8分)在矩形紙片ABCD中,AB=6,BC=8,現將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.22.(10分)已知拋物線y=a(x-1)2+3(a≠0)與y軸交于點A(0,2),頂點為B,且對稱軸l1與x軸交于點M(1)求a的值,并寫出點B的坐標;(2)將此拋物線向右平移所得新的拋物線與原拋物線交于點C,且新拋物線的對稱軸l2與x軸交于點N,過點C做DE∥x軸,分別交l1、l2于點D、E,若四邊形MDEN是正方形,求平移后拋物線的解析式.23.(12分)(1)如圖1,半徑為2的圓O內有一點P,切OP=1,弦AB過點P,則弦AB長度的最大值為__________;最小值為___________.圖①(2)如圖2,△ABC是葛叔叔家的菜地示意圖,其中∠ABC=90°,AB=80米,BC=60米,現在他利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔想建的魚塘是四邊形ABCD,且滿足∠ADC=60°,你認為葛叔叔的想法能實現嗎?若能,求出這個四邊形魚塘面積和周長的最大值;若不能,請說明理由.圖②24.班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請根據圖中的信息,解答下列問題:調查了________名學生;補全條形統計圖;在扇形統計圖中,“乒乓球”部分所對應的圓心角度數為________;學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、D【答案解析】

設第n個圖形有a個O(n為正整數),觀察圖形,根據各圖形中O的個數的變化可找出"a=1+3n(n為正整數)",再代入a=2019即可得出結論【題目詳解】設第n個圖形有an個〇(n為正整數),觀察圖形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴an=1+3n(n為正整數),∴a2019=1+3×2019=1.故選:D.【答案點睛】此題考查規律型:圖形的變化,解題關鍵在于找到規律2、B【答案解析】

首先連接AB,由題意易證得△AOB是等邊三角形,根據等邊三角形的性質,可求得∠AOB的度數.【題目詳解】連接AB,根據題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【答案點睛】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.3、A【答案解析】根據表格可知:數據25出現1次,26出現1次,27出現2次,28出現3次,∴眾數是28,這組數據從小到大排列為:25,26,27,27,28,28,28∴中位數是27∴這周最高氣溫的中位數與眾數分別是27,28故選A.4、D【答案解析】

先利用合并同類項法則,單項式除以單項式,以及單項式乘以單項式法則計算即可得到結果.【題目詳解】A、2x2+3x2=5x2,不符合題意;B、2x2﹣3x2=﹣x2,不符合題意;C、2x2÷3x2=,不符合題意;D、2x23x2=6x4,符合題意,故選:D.【答案點睛】本題主要考查了合并同類項法則,單項式除以單項式,單項式乘以單項式法則,正確掌握運算法則是解題關鍵.5、A【答案解析】原式=?(x–1)2+=+==1,故選A.6、D【答案解析】

根據全面調查與抽樣調查的特點對各選項進行判斷.【題目詳解】解:了解某班每個學生家庭用電數量可采用全面調查;調查你所在學校數學教師的年齡狀況可采用全面調查;調查神舟飛船各零件的質量要采用全面調查;而調查一批顯像管的使用壽命要采用抽樣調查.故選:D.【答案點睛】本題考查了全面調查與抽樣調查:全面調查與抽樣調查的優缺點:全面調查收集的到數據全面、準確,但一般花費多、耗時長,而且某些調查不宜用全面調查.抽樣調查具有花費少、省時的特點,但抽取的樣本是否具有代表性,直接關系到對總體估計的準確程度.7、C【答案解析】

根據位似圖形的性質,得出①△ABC與△DEF是位似圖形進而根據位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據周長比等于位似比,以及根據面積比等于相似比的平方,即可得出答案.【題目詳解】解:根據位似性質得出①△ABC與△DEF是位似圖形,②△ABC與△DEF是相似圖形,∵將△ABC的三邊縮小的原來的,∴△ABC與△DEF的周長比為2:1,故③選項錯誤,根據面積比等于相似比的平方,∴④△ABC與△DEF的面積比為4:1.故選C.【答案點睛】此題主要考查了位似圖形的性質,中等難度,熟悉位似圖形的性質是解決問題的關鍵.8、B【答案解析】

根據拋物線的開口方向確定a,根據拋物線與y軸的交點確定c,根據對稱軸確定b,根據拋物線與x軸的交點確定b2-4ac,根據x=1時,y>0,確定a+b+c的符號.【題目詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個交點,∴b2-4ac>0,C錯誤;當x=1時,y>0,∴a+b+c>0,D錯誤;故選B.【答案點睛】本題考查的是二次函數圖象與系數的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.9、A【答案解析】測試卷分析:如圖:∵∠3=∠2=38°°(兩直線平行同位角相等),∴∠1=90°﹣∠3=52°,故選A.考點:平行線的性質.10、C【答案解析】測試卷解析:A、正六邊形的外角和等于360°,是真命題;B、位似圖形必定相似,是真命題;C、樣本方差越大,數據波動越小,是假命題;D、方程x2+x+1=0無實數根,是真命題;故選:C.考點:命題與定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、【答案解析】畫樹狀圖為:共有20種等可能的結果數,其中點P(a,b)在平面直角坐標系中第二象限內的結果數為4,所以點P(a,b)在平面直角坐標系中第二象限內的概率==.故答案為.12、270【答案解析】

根據三角形的內角和與平角定義可求解.【題目詳解】解析:如圖,根據題意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案為:270度.【答案點睛】本題主要考查了三角形的內角和定理和內角與外角之間的關系.要會熟練運用內角和定理求角的度數.13、【答案解析】

解:根據題意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有兩個整數解,∴a的范圍為,故答案為.【答案點睛】本題考查一元一次不等式組的整數解,準確理解題意正確計算是本題的解題關鍵.14、.【答案解析】

作BK∥CF,使得BK=DE=2,作K關于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F,可知四邊形為平行四邊形及四邊形為矩形,在中,解直角三角形可知BH長,易得GK長,在Rt△BGK中,可得BG長,表示出△BD'E'的周長等量代換可得其值.【題目詳解】解:如圖,作BK∥CF,使得BK=DE=2,作K關于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F.由作圖知,四邊形為平行四邊形,由對稱可知,即四邊形為矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周長的最小值為BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案為:2+2.【答案點睛】本題考查了最短距離問題,涉及了軸對稱、矩形及平行四邊形的性質、解直角三角形、勾股定理,難度系數較大,利用兩點之間線段最短及軸對稱添加輔助線是解題的關鍵.15、2【答案解析】【分析】根據新定義可得出關于x的一元一次不等式,解之取其中的正整數即可得出結論.【題目詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數,∴x=2,故答案為:2.【答案點睛】本題考查一元一次不等式的整數解以及實數的運算,通過解不等式找出x<是解題的關鍵.16、5【答案解析】y=?(x?2)2+4+k,∵二次函數y=?x2?4x+k的最大值是9,∴4+k=9,解得:k=5,故答案為:5.三、解答題(共8題,共72分)17、(1)x≠﹣1;(2)2;(2)見解析;(4)在x<﹣1和x>﹣1上均單調遞增;【答案解析】

(1)根據分母非零即可得出x+1≠0,解之即可得出自變量x的取值范圍;(2)將y=代入函數解析式中求出x值即可;(2)描點、連線畫出函數圖象;(4)觀察函數圖象,寫出函數的一條性質即可.【題目詳解】解:(1)∵x+1≠0,∴x≠﹣1.故答案為x≠﹣1.(2)當y==時,解得:x=2.故答案為2.(2)描點、連線畫出圖象如圖所示.(4)觀察函數圖象,發現:函數在x<﹣1和x>﹣1上均單調遞增.【答案點睛】本題考查了反比例函數的性質以及函數圖象,根據給定數據描點、連線畫出函數圖象是解題的關鍵.18、(1)y=﹣x2+4x﹣3;(2)滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【答案解析】

(1)由于已知拋物線與x軸的交點坐標,則可利用交點式求出拋物線解析式;(2)根據二次函數圖象上點的坐標特征,可設P(t,-t2+4t-3),根據三角形面積公式得到?2?|-t2+4t-3|=1,然后去絕對值得到兩個一元二次方程,再解方程求出t即可得到P點坐標.【題目詳解】解:(1)拋物線解析式為y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)設P(t,﹣t2+4t﹣3),因為S△PAB=1,AB=3﹣1=2,所以?2?|﹣t2+4t﹣3|=1,當﹣t2+4t﹣3=1時,t1=t2=2,此時P點坐標為(2,1);當﹣t2+4t﹣3=﹣1時,t1=2+,t2=2﹣,此時P點坐標為(2+,﹣1)或(2﹣,﹣1),所以滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【答案點睛】本題考查了待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.19、(1)見解析;(2)見解析.【答案解析】

連接AF,由直徑所對的圓周角是直角、同弧所對的圓周角相等的性質,證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【題目詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選取①完成證明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?DF.【答案點睛】此題考查了切線的性質與判定、弦切角定理、相似三角形的判定與性質等知識.注意乘積的形式可以轉化為比例的形式,通過證明三角形相似得出.還要注意構造直徑所對的圓周角是圓中的常見輔助線.20、(1)答案見解析;(2)答案見解析.【答案解析】測試卷分析:(1)根據等腰直角三角形的性質即可解決問題.(2)根據正方形、長方形的性質對角線相等且互相平分,即可解決問題.測試卷解析:(1)如圖所示,∠ABC=45°.(AB、AC是小長方形的對角線).(2)線段AB的垂直平分線如圖所示,點M是長方形AFBE是對角線交點,點N是正方形ABCD的對角線的交點,直線MN就是所求的線段AB的垂直平分線.考點:作圖—應用與設計作圖.21、(1)見解析;(2).【答案解析】

(1)根據折疊得出∠DEF=∠BEF,根據矩形的性質得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據矩形的性質得出EM=AB=6,AE=BM,根據折疊得出DE=BE,根據勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【題目詳解】(1)∵現將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為.【答案點睛】本題考查了折疊的性質和矩形性質、勾股定理等知識點,能熟記折疊的性質是解答此題的關鍵.22、(1)a=-1,B坐標為(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【答案解析】

(1)利用待定系數法即可解決問題;(2)如圖,設拋物線向右平移后的解析式為y=-(x-m)2+3,再用m表示點C的坐標,需分兩種情況討論,用待定系數法即可解決問題.【題目詳解】(1)把點A(0,2)代入拋物線的解析式可得,2=a+3,∴a=-1,∴拋物線的解析式為y=-(x-1)2+3,頂點為(1,3)(2)如圖,設拋物線向右平移后的解析式為y=-(x-m)2+3,由解得x=∴點C的橫坐標為∵MN=m-1,四邊形MDEN是正方形,∴C(,m-1)把C點代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)∴平移后的解析式為y=-(x-3)2+3,當點C在x軸的下方時,C(,1-m)把C點代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)∴平移后的解析式為y=-(x-7)2+3綜上:平移后的解析式為y=-(x-3)2+3,或y=-(x-7)2+3.【答案點睛】此題主要考查二次函數的綜合問題,解題的關鍵是熟知正方形的性質與函數結合進行求解.23、(1)弦AB長度的最大值為4,最小值為2;(2)面積最大值為(2500+2400)平方米,周長最大值為340米.【答案解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論