貴州省黔東南州麻江縣2021-2022學年中考數學五模試卷含解析_第1頁
貴州省黔東南州麻江縣2021-2022學年中考數學五模試卷含解析_第2頁
貴州省黔東南州麻江縣2021-2022學年中考數學五模試卷含解析_第3頁
貴州省黔東南州麻江縣2021-2022學年中考數學五模試卷含解析_第4頁
貴州省黔東南州麻江縣2021-2022學年中考數學五模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是某個幾何體的三視圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐2.如圖,夜晚,小亮從點A經過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數關系的圖象大致為()A. B.C. D.3.一次函數y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數y2=2x+3(﹣1<x<2)的圖象記作G2,對于這兩個圖象,有以下幾種說法:①當G1與G2有公共點時,y1隨x增大而減小;②當G1與G2沒有公共點時,y1隨x增大而增大;③當k=2時,G1與G2平行,且平行線之間的距離為65下列選項中,描述準確的是()A.①②正確,③錯誤 B.①③正確,②錯誤C.②③正確,①錯誤 D.①②③都正確4.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元5.某車間有27名工人,生產某種由一個螺栓套兩個螺母的產品,每人每天生產螺母16個或螺栓22個,若分配x名工人生產螺栓,其他工人生產螺母,恰好使每天生產的螺栓和螺母配套,則下面所列方程中正確的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)6.改革開放40年以來,城鄉居民生活水平持續快速提升,居民教育、文化和娛樂消費支出持續增長,已經成為居民各項消費支出中僅次于居住、食品煙酒、交通通信后的第四大消費支出,如圖為北京市統計局發布的2017年和2018年我市居民人均教育、文化和娛樂消費支出的折線圖.說明:在統計學中,同比是指本期統計數據與上一年同期統計數據相比較,例如2018年第二季度與2017年第二季度相比較;環比是指本期統計數據與上期統計數據相比較,例如2018年第二季度與2018年第一季度相比較.根據上述信息,下列結論中錯誤的是()A.2017年第二季度環比有所提高B.2017年第三季度環比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高7.如圖,在平面直角坐標系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉60°為滾動1次,那么當正六邊形ABCDEF滾動2017次時,點F的坐標是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)8.如圖是由三個相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B. C. D.9.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.10.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.111.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點,若CD=3cm,則EF=________cm.14.如圖,在菱形ABCD中,DE⊥AB于點E,cosA=,BE=4,則tan∠DBE的值是_____.15.如圖,ABCDE是正五邊形,已知AG=1,則FG+JH+CD=_____.16.如圖,矩形ABCD中,E為BC的中點,將△ABE沿直線AE折疊時點B落在點F處,連接FC,若∠DAF=18°,則∠DCF=_____度.17.如圖,在邊長為3的菱形ABCD中,點E在邊CD上,點F為BE延長線與AD延長線的交點.若DE=1,則DF的長為________.18.如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)甲、乙兩名隊員的10次射擊訓練,成績分別被制成下列兩個統計圖.并整理分析數據如下表:平均成績/環中位數/環眾數/環方差甲771.2乙78(1)求,,的值;分別運用表中的四個統計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?20.(6分)如圖是某旅游景點的一處臺階,其中臺階坡面AB和BC的長均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現在要將此臺階改造為直接從A至C的臺階,如果改造后每層臺階的高為22cm,那么改造后的臺階有多少層?(最后一個臺階的高超過15cm且不足22cm時,按一個臺階計算.可能用到的數據:≈1.414,≈1.732)21.(6分)如圖,在一次測量活動中,小華站在離旗桿底部(B處)6米的D處,仰望旗桿頂端A,測得仰角為60°,眼睛離地面的距離ED為1.5米.試幫助小華求出旗桿AB的高度.(結果精確到0.1米,).22.(8分)我們已經知道一些特殊的勾股數,如三連續正整數中的勾股數:3、4、5;三個連續的偶數中的勾股數6、8、10;事實上,勾股數的正整數倍仍然是勾股數.另外利用一些構成勾股數的公式也可以寫出許多勾股數,畢達哥拉斯學派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數)是一組勾股數,請證明滿足以上公式的a、b、c的數是一組勾股數.然而,世界上第一次給出的勾股數公式,收集在我國古代的著名數學著作《九章算術》中,書中提到:當a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數,m>n時,a、b、c構成一組勾股數;利用上述結論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數,其中一邊長為37,且n=5,求該直角三角形另兩邊的長.23.(8分)某校對六至九年級學生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行隨機抽樣調查,從而得到一組數據.如圖是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:該校對多少學生進行了抽樣調查?本次抽樣調查中,最喜歡籃球活動的有多少?占被調查人數的百分比是多少?若該校九年級共有200名學生,如圖是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請估計全校六至九年級學生中最喜歡跳繩活動的人數約為多少?24.(10分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數進行調查統計.現從該校隨機抽取名學生作為樣本,采用問卷調查的方法收集數據(參與問卷調查的每名學生只能選擇其中一項).并根據調查得到的數據繪制成了如圖所示的兩幅不完整的統計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數;若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.25.(10分)有A、B兩組卡片共1張,A組的三張分別寫有數字2,4,6,B組的兩張分別寫有3,1.它們除了數字外沒有任何區別,隨機從A組抽取一張,求抽到數字為2的概率;隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結果.現制定這樣一個游戲規則:若選出的兩數之積為3的倍數,則甲獲勝;否則乙獲勝.請問這樣的游戲規則對甲乙雙方公平嗎?為什么?26.(12分)為上標保障我國海外維和部隊官兵的生活,現需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數關系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調配方案.27.(12分)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD;運用(1)(2)解答中所積累的經驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:觀察可得,主視圖是三角形,俯視圖是兩個矩形,左視圖是矩形,所以這個幾何體是三棱柱,故選A.考點:由三視圖判定幾何體.2、A【解析】設身高GE=h,CF=l,AF=a,當x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數,∴自變量x的系數是固定值,∴這個函數圖象肯定是一次函數圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進而隨著離燈光的越來越遠而影長將變大.故選A.3、D【解析】

畫圖,找出G2的臨界點,以及G1的臨界直線,分析出G1過定點,根據k的正負與函數增減變化的關系,結合函數圖象逐個選項分析即可解答.【詳解】解:一次函數y2=2x+3(﹣1<x<2)的函數值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個臨界點,易知一次函數y1=kx+1﹣2k(k≠0)的圖象過定點M(2,1),直線MN與直線MQ為G1與G2有公共點的兩條臨界直線,從而當G1與G2有公共點時,y1隨x增大而減??;故①正確;當G1與G2沒有公共點時,分三種情況:一是直線MN,但此時k=0,不符合要求;二是直線MQ,但此時k不存在,與一次函數定義不符,故MQ不符合題意;三是當k>0時,此時y1隨x增大而增大,符合題意,故②正確;當k=2時,G1與G2平行正確,過點M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點睛】本題是一次函數中兩條直線相交或平行的綜合問題,需要數形結合,結合一次函數的性質逐條分析解答,難度較大.4、C【解析】

用單價乘數量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數式,總價=單價乘數量.5、D【解析】設分配x名工人生產螺栓,則(27-x)人生產螺母,根據一個螺栓要配兩個螺母可得方程2×22x=16(27-x),故選D.6、C【解析】

根據環比和同比的比較方法,驗證每一個選項即可.【詳解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正確;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正確;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C錯誤;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正確;故選C.【點睛】本題考查折線統計圖,同比和環比的意義;能夠從統計圖中獲取數據,按要求對比數據是解題的關鍵.7、C【解析】

本題是規律型:點的坐標;坐標與圖形變化-旋轉,正六邊形ABCDEF一共有6條邊,即6次一循環;因為2017÷6=336余1,點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,所以點F滾動2107次時的縱坐標與相同,橫坐標的次數加1,由此即可解決問題.【詳解】.解:∵正六邊形ABCDEF一共有6條邊,即6次一循環;∴2017÷6=336余1,∴點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,∴點F滾動2107次時的縱坐標與相同,橫坐標的次數加1,∴點F滾動2107次時的橫坐標為2017+1=2018,縱坐標為,∴點F滾動2107次時的坐標為(2018,),故選C.【點睛】本題考查坐標與圖形的變化,規律型:點的坐標,解題關鍵是學會從特殊到一般的探究方法,是中考常考題型.8、C【解析】分析:細心觀察圖中幾何體中正方體擺放的位置,根據左視圖是從左面看到的圖形判定則可.詳解:從左邊看豎直疊放2個正方形.故選:C.點睛:此題考查了幾何體的三種視圖和學生的空間想象能力,左視圖是從物體左面看所得到的圖形,解答時學生易將三種視圖混淆而錯誤的選其它選項.9、D【解析】

過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.10、C【解析】

延長BC′交AB′于D,根據等邊三角形的性質可得BD⊥AB′,利用勾股定理列式求出AB,然后根據等邊三角形的性質和等腰直角三角形的性質求出BD、C′D,然后根據BC′=BD-C′D計算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【點睛】熟練掌握勾股定理以及由旋轉60°得到△ABB′是等邊三角形是解本題的關鍵.11、B【解析】(1)如圖1,當點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當點C在點B的右側時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據題目中所告訴的AB和BC的大小關系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.12、B【解析】

連接BF,由折疊可知AE垂直平分BF,根據勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【點睛】本題考查的是翻折變換的性質、矩形的性質及勾股定理的應用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】試題分析:根據點D為AB的中點可得:CD為直角三角形斜邊上的中線,根據直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據E、F分別為中點可得:EF為△ABC的中位線,根據中位線的性質可得:EF=AB=3.考點:(1)、直角三角形的性質;(2)、中位線的性質14、1.【解析】

求出AD=AB,設AD=AB=5x,AE=3x,則5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,【詳解】解:∵四邊形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴設AD=AB=5x,AE=3x,則5x﹣3x=4,x=1,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:在Rt△BDE中,故答案為:1.【點睛】本題考查了菱形的性質,勾股定理,解直角三角形的應用,關鍵是求出DE的長.15、+1【解析】

根據對稱性可知:GJ∥BH,GB∥JH,∴四邊形JHBG是平行四邊形,∴JH=BG,同理可證:四邊形CDFB是平行四邊形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,設FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG?BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(負根已經舍棄),∴BF=+1=,∴FG+JH+CD=+1.故答案為+1.16、1.【解析】

由折疊的性質得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性質得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性質求出∠ECF=54°,即可得出∠DCF的度數.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折疊的性質得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=×(90°﹣18°)=1°,∴∠AEF=∠AEB=90°﹣1°=54°,∴∠CEF=180°﹣2×54°=72°,∵E為BC的中點,∴BE=CE,∴FE=CE,∴∠ECF=×(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=1°.故答案為1.【點睛】本題考查了矩形的性質、折疊變換的性質、直角三角形的性質、等腰三角形的性質、三角形內角和定理等知識點,求出∠ECF的度數是解題的關鍵.17、1.1【解析】

求出EC,根據菱形的性質得出AD∥BC,得出相似三角形,根據相似三角形的性質得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點睛】此題主要考查了相似三角形的判定與性質,解題關鍵是根據菱形的性質證明△DEF∽△CEB,然后根據相似三角形的性質可求解.18、2【解析】

連接AD交EF與點M′,連結AM,由線段垂直平分線的性質可知AM=MB,則BM+DM=AM+DM,故此當A、M、D在一條直線上時,MB+DM有最小值,然后依據要三角形三線合一的性質可證明AD為△ABC底邊上的高線,依據三角形的面積為12可求得AD的長.【詳解】解:連接AD交EF與點M′,連結AM.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得AD=1,∵EF是線段AB的垂直平分線,∴AM=BM.∴BM+MD=MD+AM.∴當點M位于點M′處時,MB+MD有最小值,最小值1.∴△BDM的周長的最小值為DB+AD=2+1=2.【點睛】本題考查三角形的周長最值問題,結合等腰三角形的性質、垂直平分線的性質以及中點的相關屬性進行分析.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)a=7,b=7.5,c=4.2;(2)見解析.【解析】

(1)利用平均數的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數的定義直接寫出中位數即可;根據乙的平均數利用方差的公式計算即可;(2)結合平均數和中位數、眾數、方差三方面的特點進行分析.【詳解】(1)甲的平均成績a==7(環),∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數b==7.5(環),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)從平均成績看甲、乙二人的成績相等均為7環,從中位數看甲射中7環以上的次數小于乙,從眾數看甲射中7環的次數最多而乙射中8環的次數最多,從方差看甲的成績比乙的成績穩定;綜合以上各因素,若選派一名隊員參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大.【點睛】本題考查的是條形統計圖和方差、平均數、中位數、眾數的綜合運用.熟練掌握平均數的計算,理解方差的概念,能夠根據計算的數據進行綜合分析.20、33層.【解析】

根據含30度的直角三角形三邊的關系和等腰直角三角形的性質得到BD和CE的長,二者的和乘以100后除以20即可確定臺階的數.【詳解】解:在Rt△ABD中,BD=AB?sin45°=3m,在Rt△BEC中,EC=BC=3m,∴BD+CE=3+3,∵改造后每層臺階的高為22cm,∴改造后的臺階有(3+3)×100÷22≈33(個)答:改造后的臺階有33個.【點睛】本題考查了坡度的概念:斜坡的坡度等于斜坡的鉛直高度與對應的水平距離的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三邊的關系和等腰直角三角形的性質.21、11.9米【解析】

先根據銳角三角函數的定義求出AC的長,再根據AB=AC+DE即可得出結論【詳解】∵BD=CE=6m,∠AEC=60°,∴AC=CE?tan60°=6×=6≈6×1.732≈10.4m,∴AB=AC+DE=10.4+1.5=11.9m.答:旗桿AB的高度是11.9米.22、(1)證明見解析;(2)當n=5時,一邊長為37的直角三角形另兩邊的長分別為12,1.【解析】

(1)根據題意只需要證明a2+b2=c2,即可解答(2)根據題意將n=5代入得到a=(m2﹣52),b=5m,c=(m2+25),再將直角三角形的一邊長為37,分別分三種情況代入a=(m2﹣52),b=5m,c=(m2+25),即可解答【詳解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n為正整數,∴a、b、c是一組勾股數;(2)解:∵n=5∴a=(m2﹣52),b=5m,c=(m2+25),∵直角三角形的一邊長為37,∴分三種情況討論,①當a=37時,(m2﹣52)=37,解得m=±3(不合題意,舍去)②當y=37時,5m=37,解得m=(不合題意舍去);③當z=37時,37=(m2+n2),解得m=±7,∵m>n>0,m、n是互質的奇數,∴m=7,把m=7代入①②得,x=12,y=1.綜上所述:當n=5時,一邊長為37的直角三角形另兩邊的長分別為12,1.【點睛】此題考查了勾股數和勾股定理,熟練掌握勾股定理是解題關鍵23、(1)50(2)36%(3)160【解析】

(1)根據條形圖的意義,將各組人數依次相加即可得到答案;(2)根據條形圖可直接得到最喜歡籃球活動的人數,除以(1)中的調查總人數即可得出其所占的百分比;(3)用樣本估計總體,先求出九年級占全校總人數的百分比,然后求出全校的總人數;再根據最喜歡跳繩活動的學生所占的百分比,繼而可估計出全校學生中最喜歡跳繩活動的人數.【詳解】(1)該校對名學生進行了抽樣調查.本次調查中,最喜歡籃球活動的有人,,∴最喜歡籃球活動的人數占被調查人數的.(3),人,人.答:估計全校學生中最喜歡跳繩活動的人數約為人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大小.24、(1)50;(2)240;(3).【解析】

用喜愛社會實踐的人數除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數,然后用1200乘以樣本中喜愛看電視人數所占的百分比,即可估計該校喜愛看電視的學生人數;畫樹狀圖展示12種等可能的結果數,再找出恰好抽到2名男生的結果數,然后根據概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數為(人,,所以估計該校喜愛看電視的學生人數為240人;(3)畫樹狀圖為:共有12種等可能的結果數,其中恰好抽到2名男生的結果數為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率,也考查了統計圖.25、(1)P(抽到數字為2)=;(2)不公平,理由見解析.【解析】試題分析:(1)根據概率的定義列式即可;(2)畫出樹狀圖,然后根據概率的意義分別求出甲、乙獲勝的概率,從而得解.試題解析:(1)P=;(2)由題意畫出樹狀圖如下:一共有6種情況,甲獲勝的情況有4種,P=,乙獲勝的情況有2種,P=,所以,這樣的游戲規則對甲乙雙方不公平.考點:游戲公平性;列表法與樹狀圖法.26、(1)y=﹣8x+2560(30≤x≤1);(2)把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.【解析】試題分析:(1)設從甲倉庫運x噸往A港口,根據題意得從甲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論