2022屆四川省成都高新東區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)仿真試卷含解析_第1頁(yè)
2022屆四川省成都高新東區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)仿真試卷含解析_第2頁(yè)
2022屆四川省成都高新東區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)仿真試卷含解析_第3頁(yè)
2022屆四川省成都高新東區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)仿真試卷含解析_第4頁(yè)
2022屆四川省成都高新東區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)仿真試卷含解析_第5頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余20頁(yè)可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,PA切⊙O于點(diǎn)A,PO交⊙O于點(diǎn)B,點(diǎn)C是⊙O優(yōu)弧弧AB上一點(diǎn),連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長(zhǎng)為()A.π B.π C.π D.π2.下表是某校合唱團(tuán)成員的年齡分布,對(duì)于不同的x,下列關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)3.如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,則k值為()A.﹣14 B.14 C.7 D.﹣74.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對(duì)人體健康和大氣環(huán)境質(zhì)量有很大危害.2.5μm用科學(xué)記數(shù)法可表示為()A. B. C. D.5.如圖,O為坐標(biāo)原點(diǎn),四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.66.如圖在△ABC中,AC=BC,過點(diǎn)C作CD⊥AB,垂足為點(diǎn)D,過D作DE∥BC交AC于點(diǎn)E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.7.如圖是棋盤的一部分,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,已知棋子“車”的坐標(biāo)為(-2,1),棋子“馬”的坐標(biāo)為(3,-1),則棋子“炮”的坐標(biāo)為()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤9.用半徑為8的半圓圍成一個(gè)圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.810.一個(gè)不透明的袋中有四張完全相同的卡片,把它們分別標(biāo)上數(shù)字1、2、3、1.隨機(jī)抽取一張卡片,然后放回,再隨機(jī)抽取一張卡片,則兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率是()A. B. C. D.11.如圖,在平面直角坐標(biāo)系xOy中,菱形AOBC的一個(gè)頂點(diǎn)O在坐標(biāo)原點(diǎn),一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于()A.30 B.40 C.60 D.8012.已知a,b為兩個(gè)連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.10二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,為了解全校300名男生的身高情況,隨機(jī)抽取若干男生進(jìn)行身高測(cè)量,將所得數(shù)據(jù)(精確到1cm)整理畫出頻數(shù)分布直方圖(每組數(shù)據(jù)含最低值,不含最高值),估計(jì)該校男生的身高在170cm﹣175cm之間的人數(shù)約有_____人.14.如圖,已知矩形ABCD中,點(diǎn)E是BC邊上的點(diǎn),BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結(jié)論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結(jié)論是_____.(把正確結(jié)論的序號(hào)都填上)15.袋中裝有一個(gè)紅球和二個(gè)黃球,它們除了顏色外都相同,隨機(jī)從中摸出一球,記錄下顏色后放回袋中,充分搖勻后,再隨機(jī)摸出一球,兩次都摸到紅球的概率是_____.16.化簡(jiǎn)代數(shù)式(x+1+)÷,正確的結(jié)果為_____.17.關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是▲.18.如圖,將周長(zhǎng)為8的△ABC沿BC方向向右平移1個(gè)單位得到△DEF,則四邊形ABFD的周長(zhǎng)為.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字2,3、1.(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為;(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).20.(6分)為了弘揚(yáng)學(xué)生愛國(guó)主義精神,充分展現(xiàn)新時(shí)期青少年良好的思想道德素質(zhì)和精神風(fēng)貌,豐富學(xué)生的校園生活,陶冶師生的情操,某校舉辦了“中國(guó)夢(mèng)?愛國(guó)情?成才志”中華經(jīng)典詩(shī)文誦讀比賽.九(1)班通過內(nèi)部初選,選出了麗麗和張強(qiáng)兩位同學(xué),但學(xué)校規(guī)定每班只有1個(gè)名額,經(jīng)過老師與同學(xué)們商量,用所學(xué)的概率知識(shí)設(shè)計(jì)摸球游戲決定誰去,設(shè)計(jì)的游戲規(guī)則如下:在A、B兩個(gè)不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個(gè)黃球和2個(gè)白球;B箱中放置1個(gè)黃球,3個(gè)白球,麗麗從A箱中摸一個(gè)球,張強(qiáng)從B箱摸一個(gè)球進(jìn)行試驗(yàn),若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強(qiáng)去;若兩人摸出球顏色不一樣,則放回重復(fù)以上動(dòng)作,直到分出勝負(fù)為止.根據(jù)以上規(guī)則回答下列問題:(1)求一次性摸出一個(gè)黃球和一個(gè)白球的概率;(2)判斷該游戲是否公平?并說明理由.21.(6分)(1)計(jì)算:(2)化簡(jiǎn):22.(8分)第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會(huì)又舉辦過冬奧會(huì)的城市.某區(qū)舉辦了一次冬奧知識(shí)網(wǎng)上答題競(jìng)賽,甲、乙兩校各有名學(xué)生參加活動(dòng),為了解這兩所學(xué)校的成績(jī)情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.[收集數(shù)據(jù)]從甲、乙兩校各隨機(jī)抽取名學(xué)生,在這次競(jìng)賽中他們的成績(jī)?nèi)缦?甲:乙:[整理、描述數(shù)據(jù)]按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):學(xué)校人數(shù)成績(jī)甲乙(說明:優(yōu)秀成績(jī)?yōu)?,良好成?jī)?yōu)楹细癯煽?jī)?yōu)?)[分析數(shù)據(jù)]兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如下表所示:學(xué)校平均分中位數(shù)眾數(shù)甲乙其中.[得出結(jié)論](1)小明同學(xué)說:“這次競(jìng)賽我得了分,在我們學(xué)校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是_校的學(xué)生;(填“甲”或“乙”)(2)張老師從乙校隨機(jī)抽取--名學(xué)生的競(jìng)賽成績(jī),試估計(jì)這名學(xué)生的競(jìng)賽成績(jī)?yōu)閮?yōu)秀的概率為_;(3)根據(jù)以上數(shù)據(jù)推斷一所你認(rèn)為競(jìng)賽成績(jī)較好的學(xué)校,并說明理由:;(至少?gòu)膬蓚€(gè)不同的角度說明推斷的合理性)23.(8分)如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣1x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)A,過點(diǎn)C作CB⊥y軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.(1)線段AB,BC,AC的長(zhǎng)分別為AB=,BC=,AC=;(1)折疊圖1中的△ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開,折痕DE交AB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖1.請(qǐng)從下列A、B兩題中任選一題作答,我選擇題.A:①求線段AD的長(zhǎng);②在y軸上,是否存在點(diǎn)P,使得△APD為等腰三角形?若存在,請(qǐng)直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.B:①求線段DE的長(zhǎng);②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與△ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.24.(10分)某高校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.(1)這次被調(diào)查的同學(xué)共有名;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)計(jì)算在扇形統(tǒng)計(jì)圖中剩大量飯菜所對(duì)應(yīng)扇形圓心角的度數(shù);(4)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校20000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?25.(10分)“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)以上信息,解答下列問題:(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?6.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD,過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.(1)求證:EF是⊙O的切線.(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長(zhǎng).27.(12分)已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動(dòng)車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時(shí)間t(h)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問題:(1)請(qǐng)用t分別表示A、B的路程sA、sB;(2)在A出發(fā)后幾小時(shí),兩人相距15km?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

利用切線的性質(zhì)得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計(jì)算寫出∠O=60°,然后根據(jù)弧長(zhǎng)公式計(jì)算劣弧的長(zhǎng).【詳解】解:∵PA切⊙O于點(diǎn)A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長(zhǎng)=.故選:A.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.也考查了圓周角定理和弧長(zhǎng)公式.2、D【解析】

由表易得x+(10-x)=10,所以總?cè)藬?shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學(xué)人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團(tuán)總?cè)藬?shù)為30人,∴合唱團(tuán)成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個(gè)統(tǒng)計(jì)量不會(huì)隨著x的變化而變化.故選D.3、B【解析】過點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(7,2),∴k,故選B.4、C【解析】試題分析:大于0而小于1的數(shù)用科學(xué)計(jì)數(shù)法表示,10的指數(shù)是負(fù)整數(shù),其絕對(duì)值等于第一個(gè)不是0的數(shù)字前所有0的個(gè)數(shù).考點(diǎn):用科學(xué)計(jì)數(shù)法計(jì)數(shù)5、A【解析】過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)F作FN⊥x軸于點(diǎn)N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點(diǎn)A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)F作FN⊥x軸于點(diǎn)N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點(diǎn)A的坐標(biāo)為(35a,4∵點(diǎn)A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點(diǎn)F的坐標(biāo)為(10+35b,4∵點(diǎn)F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點(diǎn)睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA6、A【解析】

由等腰三角形三線合一的性質(zhì)得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據(jù)正弦函數(shù)的概念求解可得.【詳解】∵△ABC中,AC=BC,過點(diǎn)C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【點(diǎn)睛】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握等腰三角形三線合一的性質(zhì)和平行線的性質(zhì)及直角三角形的性質(zhì)等知識(shí)點(diǎn).7、B【解析】

直接利用已知點(diǎn)坐標(biāo)建立平面直角坐標(biāo)系進(jìn)而得出答案.【詳解】解:根據(jù)棋子“車”的坐標(biāo)為(-2,1),建立如下平面直角坐標(biāo)系:∴棋子“炮”的坐標(biāo)為(2,1),故答案為:B.【點(diǎn)睛】本題考查了坐標(biāo)確定位置,正確建立平面直角坐標(biāo)系是解題的關(guān)鍵.8、D【解析】

根據(jù)實(shí)數(shù)的運(yùn)算法則即可一一判斷求解.【詳解】①有理數(shù)的0次冪,當(dāng)a=0時(shí),a0=0;②為同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,正確;③中2–2=,原式錯(cuò)誤;④為有理數(shù)的混合運(yùn)算,正確;⑤為合并同類項(xiàng),正確.故選D.9、A【解析】

由于半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng),那么圓錐的底面周長(zhǎng)為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長(zhǎng)=8π,∴底面半徑=8π÷2π=1.故選A.【點(diǎn)睛】此題主要考查了圓錐側(cè)面展開扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng),解決本題的關(guān)鍵是應(yīng)用半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng).10、C【解析】【分析】畫樹狀圖展示所有16種等可能的結(jié)果數(shù),再找出兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結(jié)果數(shù),其中兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù)為12,所以兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率=,故選C.【點(diǎn)睛】本題考查了列表法與樹狀圖法求概率,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.11、B【解析】

過點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過解直角三角形找出點(diǎn)A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】過點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點(diǎn)A的坐標(biāo)為(a,a).∵點(diǎn)A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點(diǎn)F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.12、A【解析】∵9<11<16,∴,即,∵a,b為兩個(gè)連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】

用總?cè)藬?shù)300乘以樣本中身高在170cm-175cm之間的人數(shù)占被調(diào)查人數(shù)的比例.【詳解】估計(jì)該校男生的身高在170cm-175cm之間的人數(shù)約為300×=1(人),故答案為1.【點(diǎn)睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計(jì)圖獲取信息的能力;利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問題.14、①②【解析】

只要證明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解決問題.【詳解】∵四邊形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,AB==,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,DF=AB=,故①②正確,不妨設(shè)DF平分∠ADC,則△ADF是等腰直角三角形,這個(gè)顯然不可能,故③錯(cuò)誤,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④錯(cuò)誤,故答案為①②.【點(diǎn)睛】本題考查矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形、勾股定理、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.15、【解析】

首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次都摸到紅球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實(shí)驗(yàn).【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結(jié)果,其中兩次都摸到紅球的有1種結(jié)果,所以兩次都摸到紅球的概率是,故答案為.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率的知識(shí).注意畫樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).16、2x【解析】

根據(jù)分式的運(yùn)算法則計(jì)算即可求解.【詳解】(x+1+)÷===2x.故答案為2x.【點(diǎn)睛】本題考查了分式的混合運(yùn)算,熟知分式的混合運(yùn)算順序及運(yùn)算法則是解答本題的關(guān)鍵.17、k<且k≠1.【解析】根據(jù)一元二次方程kx2-x+1=1有兩個(gè)不相等的實(shí)數(shù)根,知△=b2-4ac>1,然后據(jù)此列出關(guān)于k的方程,解方程,結(jié)合一元二次方程的定義即可求解:∵有兩個(gè)不相等的實(shí)數(shù)根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.18、1.【解析】試題解析:根據(jù)題意,將周長(zhǎng)為8的△ABC沿邊BC向右平移1個(gè)單位得到△DEF,則AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四邊形ABFD的周長(zhǎng)=AD+AB+BF+DF=1+AB+BC+1+AC=1.考點(diǎn):平移的性質(zhì).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)這兩個(gè)數(shù)字之和是3的倍數(shù)的概率為.【解析】

(1)在標(biāo)有數(shù)字1、2、3的3個(gè)轉(zhuǎn)盤中,奇數(shù)的有1、3這2個(gè),根據(jù)概率公式可得;(2)用列表法列出所有情況,再計(jì)算概率.【詳解】解:(1)∵在標(biāo)有數(shù)字1、2、3的3個(gè)轉(zhuǎn)盤中,奇數(shù)的有1、3這2個(gè),∴指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為,故答案為;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情況數(shù)為9種,其中這兩個(gè)數(shù)字之和是3的倍數(shù)的有3種,所以這兩個(gè)數(shù)字之和是3的倍數(shù)的概率為=.【點(diǎn)睛】本題考核知識(shí)點(diǎn):求概率.解題關(guān)鍵點(diǎn):列出所有情況,熟記概率公式.20、(1);(2)不公平,理由見解析.【解析】

(1)畫樹狀圖列出所有等可能結(jié)果數(shù),找到摸出一個(gè)黃球和一個(gè)白球的結(jié)果數(shù),根據(jù)概率公式可得答案;(2)結(jié)合(1)種樹狀圖根據(jù)概率公式計(jì)算出兩人獲勝的概率,比較大小即可判斷.【詳解】(1)畫樹狀圖如下:由樹狀圖可知共有20種等可能結(jié)果,其中一次性摸出一個(gè)黃球和一個(gè)白球的有11種結(jié)果,∴一次性摸出一個(gè)黃球和一個(gè)白球的概率為;(2)不公平,由(1)種樹狀圖可知,麗麗去的概率為,張強(qiáng)去的概率為=,∵,∴該游戲不公平.【點(diǎn)睛】本題考查了列表法與樹狀圖法,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.21、(1);(2)-1;【解析】

(1)根據(jù)負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)、零指數(shù)冪可以解答本題;(2)根據(jù)分式的除法和減法可以解答本題.【詳解】(1)==2-.(2)=====-1【點(diǎn)睛】本題考查分式的混合運(yùn)算、負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)、零指數(shù)冪,解答本題的關(guān)鍵是明確它們各自的計(jì)算方法.22、80;(1)甲;(2);(3)乙學(xué)校競(jìng)賽成績(jī)較好,理由見解析【解析】

首先根據(jù)乙校的成績(jī)結(jié)合眾數(shù)的定義即可得出a的值;(1)根據(jù)兩個(gè)學(xué)校成績(jī)的中位數(shù)進(jìn)一步判斷即可;(2)根據(jù)概率的定義,結(jié)合乙校優(yōu)秀成績(jī)的概率進(jìn)一步求解即可;(3)根據(jù)題意,從平均數(shù)以及中位數(shù)兩方面加以比較分析即可.【詳解】由乙校成績(jī)可知,其中80出現(xiàn)的次數(shù)最多,故80為該組數(shù)據(jù)的眾數(shù),∴a=80,故答案為:80;(1)由表格可知,甲校成績(jī)的中位數(shù)為60,乙校成績(jī)的中位數(shù)為75,∵小明這次競(jìng)賽得了分,在他們學(xué)校排名屬中游略偏上,∴小明為甲校學(xué)生,故答案為:甲;(2)乙校隨便抽取一名學(xué)生的成績(jī),該學(xué)生成績(jī)?yōu)閮?yōu)秀的概率為:,故答案為:;(3)乙校競(jìng)賽成績(jī)較好,理由如下:因?yàn)橐倚5钠骄指哂诩仔5钠骄终f明平均水平高,乙校的中位數(shù)75高于甲校的中位數(shù)65,說明乙校分?jǐn)?shù)不低于70分的學(xué)生比甲校多,綜上所述,乙校競(jìng)賽成績(jī)較好.【點(diǎn)睛】本題主要考查了眾數(shù)、中位數(shù)、平均數(shù)的定義與簡(jiǎn)單概率的計(jì)算的綜合運(yùn)用,熟練掌握相關(guān)概念是解題關(guān)鍵.23、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).【解析】

(1)先確定出OA=3,OC=2,進(jìn)而得出AB=2,BC=3,利用勾股定理即可得出AC;(1)A.①利用折疊的性質(zhì)得出BD=2﹣AD,最后用勾股定理即可得出結(jié)論;②分三種情況利用方程的思想即可得出結(jié)論;B.①利用折疊的性質(zhì)得出AE,利用勾股定理即可得出結(jié)論;②先判斷出∠APC=90°,再分情況討論計(jì)算即可.【詳解】解:(1)∵一次函數(shù)y=﹣1x+2的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,∴A(3,0),C(0,2),∴OA=3,OC=2.∵AB⊥x軸,CB⊥y軸,∠AOC=90°,∴四邊形OABC是矩形,∴AB=OC=2,BC=OA=3.在Rt△ABC中,根據(jù)勾股定理得,AC==3.故答案為2,3,3;(1)選A.①由(1)知,BC=3,AB=2,由折疊知,CD=AD.在Rt△BCD中,BD=AB﹣AD=2﹣AD,根據(jù)勾股定理得,CD1=BC1+BD1,即:AD1=16+(2﹣AD)1,∴AD=5;②由①知,D(3,5),設(shè)P(0,y).∵A(3,0),∴AP1=16+y1,DP1=16+(y﹣5)1.∵△APD為等腰三角形,∴分三種情況討論:Ⅰ、AP=AD,∴16+y1=15,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,∴16+y1=16+(y﹣5)1,∴y=,∴P(0,);Ⅲ、AD=DP,15=16+(y﹣5)1,∴y=1或2,∴P(0,1)或(0,2).綜上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).選B.①由A①知,AD=5,由折疊知,AE=AC=1,DE⊥AC于E.在Rt△ADE中,DE==;②∵以點(diǎn)A,P,C為頂點(diǎn)的三角形與△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°.∵四邊形OABC是矩形,∴△ACO≌△CAB,此時(shí),符合條件,點(diǎn)P和點(diǎn)O重合,即:P(0,0);如圖3,過點(diǎn)O作ON⊥AC于N,易證,△AON∽△ACO,∴,∴,∴AN=,過點(diǎn)N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(),而點(diǎn)P1與點(diǎn)O關(guān)于AC對(duì)稱,∴P1(),同理:點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)P1,同上的方法得,P1(﹣).綜上所述:滿足條件的點(diǎn)P的坐標(biāo)為:(0,0),(),(﹣).【點(diǎn)睛】本題是一次函數(shù)綜合題,主要考查了矩形的性質(zhì)和判定,相似三角形的判定和性質(zhì),勾股定理,折疊的性質(zhì),對(duì)稱的性質(zhì),解(1)的關(guān)鍵是求出AC,解(1)的關(guān)鍵是利用分類討論的思想解決問題.24、(1)1000(2)200(3)54°(4)4000人【解析】試題分析:(1)根據(jù)沒有剩飯的人數(shù)是400人,所占的百分比是40%,據(jù)此即可求得調(diào)查的總?cè)藬?shù);(2)利用(1)中求得結(jié)果減去其它組的人數(shù)即可求得剩少量飯的人數(shù),從而補(bǔ)全直方圖;(3)利用360°乘以對(duì)應(yīng)的比例即可求解;(4)利用20000除以調(diào)查的總?cè)藬?shù),然后乘以200即可求解.試題解析:(1)被調(diào)查的同學(xué)的人數(shù)是400÷40%=1000(名);(2)剩少量的人數(shù)是1000-400-250-150=200(名),;(3)在扇形統(tǒng)計(jì)圖中剩大量飯菜所對(duì)應(yīng)扇形圓心角的度數(shù)是:360°×1501000(4)200001000答:校20000名學(xué)生一餐浪費(fèi)的食物可供4000人食用一餐.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?5、(1)補(bǔ)全圖形見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論