2021-2022學年內蒙古翁牛特旗烏丹一中高考數學全真模擬密押卷含解析_第1頁
2021-2022學年內蒙古翁牛特旗烏丹一中高考數學全真模擬密押卷含解析_第2頁
2021-2022學年內蒙古翁牛特旗烏丹一中高考數學全真模擬密押卷含解析_第3頁
2021-2022學年內蒙古翁牛特旗烏丹一中高考數學全真模擬密押卷含解析_第4頁
2021-2022學年內蒙古翁牛特旗烏丹一中高考數學全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數在區間上的大致圖象如圖所示,則可能是()A.B.C.D.2.已知函數,將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數的圖象,若,則的值可能為()A. B. C. D.3.方程的實數根叫作函數的“新駐點”,如果函數的“新駐點”為,那么滿足()A. B. C. D.4.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發展風力發電,近10年來,全球風力發電累計裝機容量連年攀升,中國更是發展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發電技術也日臻成熟,在全球范圍的能源升級換代行動中體現出大國的擔當與決心.以下是近10年全球風力發電累計裝機容量與中國新增裝機容量圖.根據所給信息,正確的統計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過5.若復數()在復平面內的對應點在直線上,則等于()A. B. C. D.6.已知數列的通項公式是,則()A.0 B.55 C.66 D.787.設,,分別是中,,所對邊的邊長,則直線與的位置關系是()A.平行 B.重合C.垂直 D.相交但不垂直8.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.9.已知實數x,y滿足,則的最小值等于()A. B. C. D.10.的展開式中有理項有()A.項 B.項 C.項 D.項11.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發奇想,設計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P212.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.14.曲線在處的切線方程是_________.15.已知向量=(1,2),=(-3,1),則=______.16.函數與的圖象上存在關于軸的對稱點,則實數的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)證明;AC⊥BP;(Ⅱ)求直線AD與平面APC所成角的正弦值.18.(12分)數列滿足,是與的等差中項.(1)證明:數列為等比數列,并求數列的通項公式;(2)求數列的前項和.19.(12分)設實數滿足.(1)若,求的取值范圍;(2)若,,求證:.20.(12分)設函數.(1)解不等式;(2)記的最大值為,若實數、、滿足,求證:.21.(12分)已知;.(1)若為真命題,求實數的取值范圍;(2)若為真命題且為假命題,求實數的取值范圍.22.(10分)設為等差數列的前項和,且,.(1)求數列的通項公式;(2)若滿足不等式的正整數恰有個,求正實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據特殊值及函數的單調性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調,故排除C;故選:B【點睛】本題考查根據函數圖象選擇函數解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.2.C【解析】

利用二倍角公式與輔助角公式將函數的解析式化簡,然后利用圖象變換規律得出函數的解析式為,可得函數的值域為,結合條件,可得出、均為函數的最大值,于是得出為函數最小正周期的整數倍,由此可得出正確選項.【詳解】函數,將函數的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數的圖象,易知函數的值域為.若,則且,均為函數的最大值,由,解得;其中、是三角函數最高點的橫坐標,的值為函數的最小正周期的整數倍,且.故選C.【點睛】本題考查三角函數圖象變換,同時也考查了正弦型函數與周期相關的問題,解題的關鍵在于確定、均為函數的最大值,考查分析問題和解決問題的能力,屬于中等題.3.D【解析】

由題設中所給的定義,方程的實數根叫做函數的“新駐點”,根據零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數根叫做函數的“新駐點”,對于函數,由于,,設,該函數在為增函數,,,在上有零點,故函數的“新駐點”為,那么故選:.【點睛】本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關鍵,本題考查了推理判斷的能力,屬于基礎題..4.D【解析】

先列表分析近10年全球風力發電新增裝機容量,再結合數據研究單調性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現下降趨勢,B錯誤;經計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎題.5.C【解析】

由題意得,可求得,再根據共軛復數的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.【點睛】本題考查復數的幾何表示和共軛復數的定義,屬于基礎題.6.D【解析】

先分為奇數和偶數兩種情況計算出的值,可進一步得到數列的通項公式,然后代入轉化計算,再根據等差數列求和公式計算出結果.【詳解】解:由題意得,當為奇數時,,當為偶數時,所以當為奇數時,;當為偶數時,,所以故選:D【點睛】此題考查數列與三角函數的綜合問題,以及數列求和,考查了正弦函數的性質應用,等差數列的求和公式,屬于中檔題.7.C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關系8.D【解析】

先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。9.D【解析】

設,,去絕對值,根據余弦函數的性質即可求出.【詳解】因為實數,滿足,設,,,恒成立,,故則的最小值等于.故選:.【點睛】本題考查了橢圓的參數方程、三角函數的圖象和性質,考查了運算能力和轉化能力,意在考查學生對這些知識的理解掌握水平.10.B【解析】

由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.11.C【解析】

將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數,屬于基礎題.12.D【解析】

可過點S作SF∥OE,交AB于點F,并連接CF,從而可得出∠CSF(或補角)為異面直線SC與OE所成的角,根據條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點S作SF∥OE,交AB于點F,連接CF,則∠CSF(或補角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關系,平行線分線段成比例的定理,考查了計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數在單調遞增;令,即,解得,此函數在上單調遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應用,注意驗證等號成立的條件,屬于基礎題.14.【解析】

利用導數的運算法則求出導函數,再利用導數的幾何意義即可求解.【詳解】求導得,所以,所以切線方程為故答案為:【點睛】本題考查了基本初等函數的導數、導數的運算法則以及導數的幾何意義,屬于基礎題.15.-6【解析】

由可求,然后根據向量數量積的坐標表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點睛】本題主要考查了向量數量積的坐標表示,屬于基礎試題.16.【解析】

先求得與關于軸對稱的函數,將問題轉化為與的圖象有交點,即方程有解.對分成三種情況進行分類討論,由此求得實數的取值范圍.【詳解】因為關于軸對稱的函數為,因為函數與的圖象上存在關于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數與的圖象必有交點,滿足題意;若,設,相切時,切點的坐標為,則,解得,切線斜率為,由圖可知,當,即時,,的圖象有交點,此時,與的圖象有交點,函數與的圖象上存在關于軸的對稱點,綜上可得,實數的取值范圍為.故答案為:【點睛】本小題主要考查利用導數求解函數的零點以及對稱性,函數與方程等基礎知識,考查學生分析問題,解決問題的能力,推理與運算求解能力,轉化與化歸思想和應用意識.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ).【解析】

(I)取的中點,連接,通過證明平面得出;(II)以為原點建立坐標系,求出平面的法向量,通過計算與的夾角得出與平面所成角.【詳解】(I)證明:取AC的中點M,連接PM,BM,∵AB=BC,PA=PC,∴AC⊥BM,AC⊥PM,又BM∩PM=M,∴AC⊥平面PBM,∵BP?平面PBM,∴AC⊥BP.(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,∴∠ABC=120°,∵AB=BC=1,∴AC,BM,∴AC⊥CD,又AC⊥BM,∴BM∥CD.∵PA=PC,CM,∴PM,∵PB,∴cos∠BMP,∴∠PMB=120°,以M為原點,以MB,MC的方向為x軸,y軸的正方向,以平面ABCD在M處的垂線為z軸建立坐標系M﹣xyz,如圖所示:則A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),∴(﹣1,,0),(0,,0),(,,),設平面ACP的法向量為(x,y,z),則,即,令x得(,0,1),∴cos,,∴直線AD與平面APC所成角的正弦值為|cos,|.【點睛】本題考查異面直線垂直的證明,考查直線與平面所成角的正弦值的求法,解題時要認真審題,注意向量法的合理使用,難度一般.18.(1)見解析,(2)【解析】

(1)根據等差中項的定義得,然后構造新等比數列,寫出的通項即可求(2)根據(1)的結果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數列是以為首項,2為公比的等比數列.即有,所以.(2)由(1)知,數列的通項為:,故.【點睛】考查等差中項的定義和分組求和的方法;中檔題.19.(1)(2)證明見解析【解析】

(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因為(當且僅當,時取等號).所以成立,故成立.【點睛】本題考查分類討論法解絕對值不等式,基本不等式的應用,屬于中檔題.20.(1)(2)證明見解析【解析】

(1)采用零點分段法:、、,由此求解出不等式的解集;(2)先根據絕對值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當時,不等式為,解得當時,不等式為,解得當時,不等式為,解得∴原不等式的解集為(2)當且僅當即時取等號,∴,∴∵,∴,∴(當且僅當時取“”)同理可得,∴∴(當且僅當時取“”)【點睛】本題考查絕對值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論