2022屆內蒙古自治區五原縣第一中學高三適應性調研考試數學試題含解析_第1頁
2022屆內蒙古自治區五原縣第一中學高三適應性調研考試數學試題含解析_第2頁
2022屆內蒙古自治區五原縣第一中學高三適應性調研考試數學試題含解析_第3頁
2022屆內蒙古自治區五原縣第一中學高三適應性調研考試數學試題含解析_第4頁
2022屆內蒙古自治區五原縣第一中學高三適應性調研考試數學試題含解析_第5頁
免費預覽已結束,剩余18頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數滿足,則()A. B. C. D.2.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.3.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.4.已知i是虛數單位,則1+iiA.-12+32i5.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.36.已知定義在上的偶函數,當時,,設,則()A. B. C. D.7.以下三個命題:①在勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數為()A.3 B.2 C.1 D.08.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.9.已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.10.若函數f(x)=x3+x2-在區間(a,a+5)上存在最小值,則實數a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)11.函數在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-212.設為銳角,若,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某公司生產甲、乙兩種桶裝產品.已知生產甲產品1桶需耗原料1千克、原料2千克;生產乙產品1桶需耗原料2千克,原料1千克.每桶甲產品的利潤是300元,每桶乙產品的利潤是400元.公司在生產這兩種產品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產計劃,從每天生產的甲、乙兩種產品中,公司共可獲得的最大利潤是__________元.14.已知為雙曲線的左、右焦點,過點作直線與圓相切于點,且與雙曲線的右支相交于點,若是上的一個靠近點的三等分點,且,則四邊形的面積為_______.15.(5分)如圖是一個算法的流程圖,若輸出的值是,則輸入的值為____________.16.函數的圖象在處的切線方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)表示,中的最大值,如,己知函數,.(1)設,求函數在上的零點個數;(2)試探討是否存在實數,使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.18.(12分)已知在平面直角坐標系中,橢圓的焦點為為橢圓上任意一點,且.(1)求橢圓的標準方程;(2)若直線交橢圓于兩點,且滿足(分別為直線的斜率),求的面積為時直線的方程.19.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.20.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.21.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.22.(10分)已知函數.(1)若關于的不等式的整數解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

化簡得到,,再計算復數模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數的化簡,共軛復數,復數模,意在考查學生的計算能力.2.D【解析】

取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.3.B【解析】

利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.4.D【解析】

利用復數的運算法則即可化簡得出結果【詳解】1+i故選D【點睛】本題考查了復數代數形式的乘除運算,屬于基礎題。5.A【解析】

分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.6.B【解析】

根據偶函數性質,可判斷關系;由時,,求得導函數,并構造函數,由進而判斷函數在時的單調性,即可比較大小.【詳解】為定義在上的偶函數,所以所以;當時,,則,令則,當時,,則在時單調遞增,因為,所以,即,則在時單調遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數的性質應用,由導函數性質判斷函數單調性的應用,根據單調性比較大小,屬于中檔題.7.C【解析】

根據抽樣方式的特征,可判斷①;根據相關系數的性質,可判斷②;根據獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據抽樣是間隔相同,且樣本間無明顯差異,故①應是系統抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數、獨立性檢驗等知識點,屬于基礎題.8.D【解析】

設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.9.B【解析】

根據三視圖得到幾何體為一三棱錐,并以該三棱錐構造長方體,于是得到三棱錐的外接球即為長方體的外接球,進而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當且僅當,時,三棱錐外接球的表面積取得最小值為.故選B.【點睛】(1)解決關于外接球的問題的關鍵是抓住外接的特點,即球心到多面體的頂點的距離都等于球的半徑,同時要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.10.C【解析】

求函數導數,分析函數單調性得到函數的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數,在(-2,0)上是減函數,作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數導數研究函數的單調性,進而研究函數的最值,屬于常考題型.11.B【解析】

由函數解析式中含絕對值,所以去絕對值并畫出函數圖象,結合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數的圖象如下所示;由函數圖像可知,當時,有最大值,當時,有最小值.故選:B.【點睛】本題考查了絕對值函數圖象的畫法,由函數圖象求函數的最值,屬于基礎題.12.D【解析】

用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯系.二、填空題:本題共4小題,每小題5分,共20分。13.1元【解析】設分別生產甲乙兩種產品為桶,桶,利潤為元

則根據題意可得目標函數,作出可行域,如圖所示作直線然后把直線向可行域平移,

由圖象知當直線經過時,目標函數的截距最大,此時最大,

由可得,即此時最大,

即該公司每天生產的甲4桶,乙4桶,可獲得最大利潤,最大利潤為1.【點睛】本題考查用線性規劃知識求利潤的最大值,根據條件建立不等式關系,以及利用線性規劃的知識進行求解是解決本題的關鍵.14.60【解析】

根據題中給的信息與雙曲線的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長度,再根據計算求解即可.【詳解】如圖所示:設雙曲線的半焦距為.因為,,,所以由勾股定理,得.所以.因為是上一個靠近點的三等分點,是的中點,所以.由雙曲線的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60【點睛】本題主要考查了雙曲線中利用定義與余弦定理求解線段長度與面積的方法,需要根據雙曲線的定義表示各邊的長度,再在合適的三角形里面利用余弦定理求得基本量的關系.屬于難題.15.或【解析】

依題意,當時,由,即,解得;當時,由,解得或(舍去).綜上,得或.16.【解析】

利用導數的幾何意義,對求導后在計算在處導函數的值,再利用點斜式列出方程化簡即可.【詳解】,則切線的斜率為.又,所以函數的圖象在處的切線方程為,即.故答案為:【點睛】本題主要考查了根據導數的幾何意義求解函數在某點處的切線方程問題,需要注意求導法則與計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)個;(1)存在,.【解析】試題分析:(1)設,對其求導,及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構造,通過求導得到最值,得到滿足條件的的范圍.試題解析:(1)設,.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設,結合與在上圖象可知,這兩個函數的圖象在上有兩個交點,即在上零點的個數為1...........................5分(或由方程在上有兩根可得)(1)假設存在實數,使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設,令,得遞增;令,得遞減,∴,當即時,,∴,∵,∴4.故當時,對恒成立,.......................8分當即時,在上遞減,∴.∵,∴,故當時,對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實數,使得對恒成立,且的取值范圍為................................................11分考點:導數應用.【思路點睛】本題考查了函數恒成立問題;利用導數來判斷函數的單調性,進一步求最值;屬于難題.本題考查函數導數與單調性.確定零點的個數問題:可利用數形結合的辦法判斷交點個數,如果函數較為復雜,可結合導數知識確定極值點和單調區間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉化為求函數的值域問題處理.恒成立問題以及可轉化為恒成立問題的問題,往往可利用參變分離的方法,轉化為求函數最值處理.也可構造新函數然后利用導數來求解.注意利用數形結合的數學思想方法.18.(1)(2)或【解析】

(1)根據橢圓定義求得,得橢圓方程;(2)設,由得,應用韋達定理得,代入已知條件可得,再由橢圓中弦長公式求得弦長,原點到直線的距離,得三角形面積,從而可求得,得直線方程.【詳解】解:(1)據題意設橢圓的方程為則橢圓的標準方程為.(2)據得設,則又原點到直線的距離解得或所求直線的方程為或【點睛】本題考查求橢圓標準方程,考查直線與橢圓相交問題.解題時采取設而不求思想,即設交點坐標為,直線方程與橢圓方程聯立消元后應用韋達定理得,把這個結論代入題中條件求得參數,用它求弦長等等,從而解決問題.19.(1)平行,證明見解析;(2).【解析】

(1)由題意及圖形的翻折規律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎題.20.(1)證明見詳解;(2)【解析】

(1)取中點,根據,利用線面垂直的判定定理,可得平面,最后可得結果.(2)利用建系,假設長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結果.【詳解】(1)取中點,連接,如圖由,所以由,平面所以平面,又平面所以(2)假設,由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標系,如圖設平面的一個法向量為則令,所以則直線與平面所成角的正弦值為【點睛】本題考查線面垂直、線線垂直的應用,還考查線面角,學會使用建系的方法來解決立體幾何問題,將幾何問題代數化,化繁為簡,屬中檔題.21.橫線處任填一個都可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論