




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.42.設,均為非零的平面向量,則“存在負數,使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.已知數列對任意的有成立,若,則等于()A. B. C. D.4.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.85.雙曲線的漸近線方程為()A. B. C. D.6.下圖為一個正四面體的側面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.7.已知復數,則對應的點在復平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.“角谷猜想”的內容是:對于任意一個大于1的整數,如果為偶數就除以2,如果是奇數,就將其乘3再加1,執行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.99.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.510.數列的通項公式為.則“”是“為遞增數列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要11.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數是()A. B. C. D.12.已知復數滿足,且,則()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若方程的解為,(),則_______;_______.14.在平面直角坐標系中,雙曲線(,)的左頂點為A,右焦點為F,過F作x軸的垂線交雙曲線于點P,Q.若為直角三角形,則該雙曲線的離心率是______.15.已知,,,的夾角為30°,,則_________.16.如圖,半球內有一內接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.18.(12分)選修4-5:不等式選講已知函數的最大值為3,其中.(1)求的值;(2)若,,,求證:19.(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.20.(12分)傳染病的流行必須具備的三個基本環節是:傳染源、傳播途徑和人群易感性.三個環節必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區已經出現了新冠狀病毒的感染病人,為了掌握該地區居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?(2)用樣本估計總體,若從該地區出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)已知各項均為正數的數列的前項和為,滿足,,,,恰為等比數列的前3項.(1)求數列,的通項公式;(2)求數列的前項和為;若對均滿足,求整數的最大值;(3)是否存在數列滿足等式成立,若存在,求出數列的通項公式;若不存在,請說明理由.22.(10分)已知數列為公差不為零的等差數列,是數列的前項和,且、、成等比數列,.設數列的前項和為,且滿足.(1)求數列、的通項公式;(2)令,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設直線AB的方程為,代入得:,由根與系數的關系得,,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設直線AB的方程為,代入得:.由根與系數的關系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關系、焦半徑公式的應用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.2、B【解析】
根據充分條件、必要條件的定義進行分析、判斷后可得結論.【詳解】因為,均為非零的平面向量,存在負數,使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當向量,的夾角為鈍角時,滿足,但此時,不共線且反向,所以必要性不成立.所以“存在負數,使得”是“”的充分不必要條件.故選B.【點睛】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時注意選擇恰當的方法判斷命題是否正確.3、B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數列中的方法,并能熟練運用對應方法求解.4、A【解析】
由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.5、C【解析】
根據雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.6、C【解析】
將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.7、A【解析】
利用復數除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.【點睛】本小題主要考查復數除法運算,考查復數對應點的坐標所在象限,屬于基礎題.8、B【解析】
模擬程序運行,觀察變量值可得結論.【詳解】循環前,循環時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環,輸出.故選:B.【點睛】本題考查程序框圖,考查循環結構,解題時可模擬程序運行,觀察變量值,從而得出結論.9、A【解析】
根據幾何體分析正視圖和側視圖的形狀,結合題干中的數據可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.10、A【解析】
根據遞增數列的特點可知,解得,由此得到若是遞增數列,則,根據推出關系可確定結果.【詳解】若“是遞增數列”,則,即,化簡得:,又,,,則是遞增數列,是遞增數列,“”是“為遞增數列”的必要不充分條件.故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據數列的單調性求解參數范圍,屬于基礎題.11、B【解析】
①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.12、C【解析】
設,則,利用和求得,即可.【詳解】設,則,因為,則,所以,又,即,所以,所以,故選:C【點睛】本題考查復數的乘法法則的應用,考查共軛復數的應用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出在上的對稱軸,依據對稱性可得的值;由可得,依據可求出的值.【詳解】解:令,解得因為,所以關于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數的對稱軸,考查了誘導公式,考查了同角三角函數的基本關系.本題的易錯點在于沒有正確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令進行求解.14、2【解析】
根據是等腰直角三角形,且為中點可得,再由雙曲線的性質可得,解出即得.【詳解】由題,設點,由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點,過點,且軸,,可得,,整理得:,即,又,.故答案為:【點睛】本題考查雙曲線的簡單性質,是常考題型.15、1【解析】
由求出,代入,進行數量積的運算即得.【詳解】,存在實數,使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數量積的運算,屬于基礎題.16、【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關系,進而可寫出半球的半徑與四棱錐體積的關系,進而求得結果.【詳解】設所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找幾何體中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)設為中點,連結,先證明,可證得,假設不為線段的中點,可得平面,這與矛盾,即得證;(2)以為原點,以分別為軸建立空間直角坐標系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設為中點,連結.∴,,又平面,平面,∴.又分別為中點,,又,∴.假設不為線段的中點,則與是平面內內的相交直線,從而平面,這與矛盾,所以為線段的中點.(2)以為原點,由條件面面,∴,以分別為軸建立空間直角坐標系,則,,,,,,.設平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點睛】本題考查了立體幾何與空間向量綜合,考查了學生邏輯推理,空間想象,數學運算的能力,屬于中檔題.18、(1)(2)見解析【解析】
(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉化為2ab≥1,再構造函數利用導數判斷單調性求出最小值可證.【詳解】(1)∵,∴.∴當時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當且僅當時等號成立,∴.令,.則在上單調遞減.∴.∴當時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據絕對值的定義,合理去掉絕對值號,及合理轉化恒成立問題是解答本題的關鍵,著重考查分析問題和解答問題的能力,以及轉化思想的應用.19、(1)曲線的直角坐標方程為,曲線的參數方程為為參數(2)【解析】
(1)將代入,可得,所以曲線的直角坐標方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數方程為為參數.(2)由題可設,,,所以,,,所以,因為,所以,所以當,即時,l取得最大值為,所以的周長的最大值為.20、(1)有的把握認為是否戴口罩出行的行為與年齡有關.(2)【解析】
(1)根據列聯表和獨立性檢驗的公式計算出觀測值,從而由參考數據作出判斷.(2)因為樣本中出行不戴口罩的居民有30人,其中年輕人有10人,用樣本估計總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據獨立重復事件的概率公式即可求得結果.【詳解】(1)由題意可知,有的把握認為是否戴口罩出行的行為與年齡有關.(2)由樣本估計總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點睛】本題主要考查獨立性檢驗及獨立重復事件的概率求法,難度一般.21、(2),(2),的最大整數是2.(3)存在,【解析】
(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數列,所以,化簡計算得,,從而得到數列的通項公式,再計算出,,,從而可求出數列的通項公式;(2)令,化簡計算得,從而可得數列是遞增的,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廊坊市重點中學2024-2025學年下學期初三化學試題第二次月考考試試卷含解析
- 煙臺科技學院《西方風景園林理論與實踐》2023-2024學年第二學期期末試卷
- 沈陽航空航天大學北方科技學院《理論物理概論Ⅲ》2023-2024學年第一學期期末試卷
- 四川工商職業技術學院《工程制圖A》2023-2024學年第二學期期末試卷
- 山東城市服務職業學院《高等語言程序設計C》2023-2024學年第二學期期末試卷
- 益陽市資陽區2025年數學三下期末監測模擬試題含解析
- 山東交通職業學院《漫畫角色設計》2023-2024學年第一學期期末試卷
- 民辦四川天一學院《世界流行文化研究》2023-2024學年第二學期期末試卷
- 江蘇省南京師范江寧分校2025屆初三得分訓練(二)英語試題試卷含答案
- 南京農業大學《外國文學作品導讀》2023-2024學年第二學期期末試卷
- 星球版七年級地理上冊《海陸變遷》《火山噴發》實驗說課 課件
- 2023年通管局安全員考試-培訓及考試題庫(導出版)
- GB/T 4857.22-1998包裝運輸包裝件單元貨物穩定性試驗方法
- GB/T 25074-2010太陽能級多晶硅
- GB/T 23842-2009無機化工產品中硅含量測定通用方法還原硅鉬酸鹽分光光度法
- GA/T 1217-2015光纖振動入侵探測器技術要求
- 特種陶瓷介紹課件
- 有機物污染(環境化學)課件
- 安全生產培訓合格證書樣本
- 繪制軸承座三視圖課件
- 五年級上冊數學試題- 五年級趣味數學社團1(第五周活動安排:圖形面積(二))人教新課標 (無答案)
評論
0/150
提交評論