




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是上的偶函數,是的奇函數,且,則的值為()A. B. C. D.2.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣123.正方形的邊長為,是正方形內部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.4.已知數列為等比數列,若,且,則()A. B.或 C. D.5.記單調遞增的等比數列的前項和為,若,,則()A. B. C. D.6.已知(i為虛數單位,),則ab等于()A.2 B.-2 C. D.7.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.8.將函數的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.9.射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數的底數,為被測物厚度,為被測物的密度,是被測物對射線的吸收系數.工業上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質厚度,,結果精確到0.001)A.0.110 B.0.112 C. D.10.已知數列對任意的有成立,若,則等于()A. B. C. D.11.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.412.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(其中為自然對數的底數),,若函數恰有4個不同的零點,則實數的取值范圍為________.14.若函數(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.15.如圖,在復平面內,復數,對應的向量分別是,,則_______.16.已知,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當x>0時,若函數g(x)(a>0)的最小值恒大于f(x),求實數a的取值范圍.18.(12分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是是參數),若直線與圓相切,求實數的值.19.(12分)已知函數,(1)若,求的單調區間和極值;(2)設,且有兩個極值點,,若,求的最小值.20.(12分)設點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.21.(12分)已知,,為正數,且,證明:(1);(2).22.(10分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據函數的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數,,而函數是上的偶函數,,,故為周期函數,且周期為故選:B【點睛】本題主要考查了函數的奇偶性,函數的周期性的應用,屬于基礎題.2、D【解析】
分別聯立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結果.【詳解】設,聯立則,因為直線經過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數,屬基礎題。3、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標系,設,根據,可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數量積的坐標表示,屬于基礎題.4、A【解析】
根據等比數列的性質可得,通分化簡即可.【詳解】由題意,數列為等比數列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數列的性質,考查了推理能力與運算能力,屬于基礎題.5、C【解析】
先利用等比數列的性質得到的值,再根據的方程組可得的值,從而得到數列的公比,進而得到數列的通項和前項和,根據后兩個公式可得正確的選項.【詳解】因為為等比數列,所以,故即,由可得或,因為為遞增數列,故符合.此時,所以或(舍,因為為遞增數列).故,.故選C.【點睛】一般地,如果為等比數列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數且;(3)為等比數列()且公比為.6、A【解析】
利用復數代數形式的乘除運算化簡,再由復數相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數代數形式的乘除運算,考查復數相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.7、C【解析】
計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.8、B【解析】
首先根據函數的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關三角函數的周期與函數圖象平移之間的關系,屬于簡單題目.9、C【解析】
根據題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數為.故選:C【點睛】本題主要考查知識的遷移能力,把數學知識與物理知識相融合;重點考查指數型函數,利用指數的相關性質來研究指數型函數的性質,以及解指數型方程;屬于中檔題.10、B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數列中的方法,并能熟練運用對應方法求解.11、C【解析】
畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.12、A【解析】
如圖設平面,球心在上,根據正四面體的性質可得,根據平面向量的加法的幾何意義,重心的性質,結合已知求出的值.【詳解】如圖設平面,球心在上,由正四面體的性質可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.【點睛】本題考查了正四面體的性質,考查了平面向量加法的幾何意義,考查了重心的性質,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求函數,研究函數的單調性和極值,作出函數的圖象,設,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,利用一元二次函數根的分布進行求解即可.【詳解】當時,,由得:,解得,由得:,解得,即當時,函數取得極大值,同時也是最大值,(e),當,,當,,作出函數的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數與方程的應用,利用換元法進行轉化一元二次函數根的分布以及.求的導數,研究函數的的單調性和極值是解決本題的關鍵,屬于難題.14、(1,)【解析】
在定義域[m,n]上的值域是[m2,n2],等價轉化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【點睛】本題主要考查導數的幾何意義,把已知條件進行等價轉化是求解的關鍵,側重考查數學抽象的核心素養.15、【解析】試題分析:由坐標系可知考點:復數運算16、【解析】解:由題意可知:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)?!窘馕觥?/p>
(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當時,原不等式可化為,此時不成立;當時,原不等式可化為,解得,即;當時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因為,當且僅當時等號成立,所以.當時,,所以.所以,解得,故實數的取值范圍為.【點睛】本題主要考查了絕對值不等式的解法,以及轉化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現了數形結合的思想;法二:利用“零點分段法”求解,體現了分類討論的思想;法三:通過構造函數,利用函數的圖象求解,體現了函數與方程的思想.18、【解析】
將圓的極坐標方程化為直角坐標方程,直線的參數方程化為普通方程,再根據直線與圓相切,利用圓心到直線的距離等于半徑,即可求實數的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點睛】本題重點考查方程的互化,考查直線與圓的位置關系,解題的關鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.19、(1)增區間為,減區間為;極小值,無極大值;(2)【解析】
(1)求出f(x)的導數,解不等式,即可得到函數的單調區間,進而得到函數的極值;(2)由題意可得,,求出的表達式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導,得到,結合,當得到:增區間為,當,得減區間為且在時有極小值,無極大值.(2)將解析式代入,得,求導得到,令,得到,,,,,,,,因為,所以設,令,則所以在單調遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【點睛】本題考查了函數的單調性、極值、最值問題,考查導數的應用以及函數的極值的意義,考查轉化思想與減元意識,是一道綜合題.20、(1);(2)2.【解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關于的一元二次方程,由直線與橢圓僅有一個公共點知,即可得到,的關系式,利用點到直線的距離公式即可得到,.當時,設直線的傾斜角為,則,即可得到四邊形面積的表達式,利用基本不等式的性質,結合當時,四邊形是矩形,即可得出的最大值.【詳解】(1)設,則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,得.
由直線與橢圓僅有一個公共點知,,化簡得:.
設,,當時,設直線的傾斜角為,則,,,,∴當時,,,.當時,四邊形是矩形,.
所以四邊形面積的最大值為2.【點睛】本題主要考查橢圓的方程與性質、直線方程、直線與橢圓的位置關系、向量知識、二次函數的單調性、基本不等式的性質等基礎知識,考查運算能力、推理論證以及分析問題、解決問題的能力,考查數形結合、化歸與轉化思想.21、(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.22、(1)證明見解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030合成橡膠制品行業市場深度調研及發展趨勢與投資研究報告
- 2025-2030農田灌溉設備行業市場深度調研及發展趨勢與投資戰略研究報告
- 2025-2030光通信設備市場前景分析及投資策略與風險管理研究報告
- 2025-2030中國鮮蔥行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國風速繼電器行業市場深度調研及發展趨勢和前景預測研究報告
- SnSe薄膜制備及其鈍化特性研究
- 人教版三年級上冊《生命.生態.安全》閱讀理解計劃
- 電力行業數字化轉型實施計劃
- 職業資格認證培訓項目計劃
- 初一數學家庭作業管理計劃
- (二模)2025年深圳市高三年級第二次調研考試歷史試卷(含標準答案)
- 一年級信息技術下冊 在網上交流信息教學設計 清華版
- 廣西《疼痛綜合評估規范》(材料)
- 廣東省2024-2025學年佛山市普通高中教學質量檢測政治試卷及答案(二)高三試卷(佛山二模)
- 11.1 杠桿 課件 2024-2025學年教科版物理八年級下學期
- 搶救工作制度課件
- LOGO更換普通夾板作業課件
- 2025年415全民國家安全教育日主題班會課件
- 美容師考試與法律法規相關知識及試題答案
- 山東省東營市東營區勝利第一初級中學2024-2025學年九年級下學期一模英語試卷(含答案無聽力原文及音頻)
- 臨床決策支持系統在路徑優化中的實踐案例
評論
0/150
提交評論