




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學業水平考試數學學問點在學習高中數學時,高中的同學應當懂得怎樣去總結重要的數學學問點。下面是我給大家帶來的2022高中數學學業水平考學問點總結,歡迎大家閱讀!
2022高中數學學業水平考學問點總結篇1
1.等比中項
假如在a與b中間插入一個數、n、p、q∈N,且m+n=p+q,則am·an=ap·aq;
(2)在等比數列中,依次每k項之和仍成等比數列。
(3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數的等比數列各項取同底指數冪后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。
(5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)
(6)任意兩項am,an的關系為an=am·q’(n-m)
(7)在等比數列中,首項a1與公比q都不為零。
留意:上述公式中a’n表示a的n次方。
2022高中數學學業水平考學問點總結篇2
直線、平面、簡潔幾何體:
1、學會三視圖的分析:
2、斜二測畫法應留意的地方:
(1)在已知圖形中取相互垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸ox、oy、使∠xoy=45°(或135°);
(2)平行于x軸的線段長不變,平行于y軸的線段長減半.
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖肯定不是90度.
3、表(側)面積與體積公式:
⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h
⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:
⑶臺體①表面積:S=S側+S上底S下底②側面積:S側=
⑷球體:①表面積:S=;②體積:V=
4、位置關系的證明(主要方法):留意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
⑴異面直線所成角的求法:平移法:平移直線,構造三角形;
⑵直線與平面所成的角:直線與射影所成的角
2022高中數學學業水平考學問點總結篇3
極值的定義:
(1)極大值:一般地,設函數f(x)在點x0四周有定義,假如對x0四周的全部的點,都有f(x)
(2)微小值:一般地,設函數f(x)在x0四周有定義,假如對x0四周的全部的點,都有f(x)f(x0),就說f(x0)是函數f(x)的一個微小值,記作y微小值=f(x0),x0是微小值點。
極值的性質:
(1)極值是一個局部概念,由定義知道,極值只是某個點的函數值與它四周點的函數值比較是或最小,并不意味著它在函數的整個的定義域內或最小;
(2)函數的極值不是的,即一個函數在某區間上或定義域內極大值或微小值可以不止一個;
(3)極大值與微小值之間無確定的大小關系,即一個函數的極大值未必大于微小值;
(4)函數的極值點肯定出現在區間的內部,區間的端點不能成為極值點,而使函數取得值、最小值的點可能在區間的內部,也可能在區間的端點。
求函數f(x)的極值的步驟:
(1)確定函數的定義區間,求導數f′(x);
(2)求方程f′(x)=0的根;
(3)用函數的導數為0的點,順次將函數的定義區間分成若干小開區間,并列成表格,檢查f′(x)在方程根左右的值的符號,假如左正右負,那么f(x)在這個根處取得極大值;假如左負右正,那么f(x)在這個根處取得微小值;假如左右不轉變符號即都為正或都為負,則f(x)在這個根處無極值。
2022高中數學學業水平考學問點總結篇4
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長,S=6a2,V=a3
4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
2022高中數學學業水平考學問點總結篇5
1.函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)推斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再推斷其奇偶性;
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
2.復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);討論函數的問題肯定要留意定義域優先的原則。
(2)復合函數的單調性由“同增異減”判定;
3.函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;
4.函數的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關于點(a,0),(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3711-2020內河低壓小容量船舶岸電連接系統技術規范
- DB32/T 3558-2019生活垃圾焚燒飛灰熔融處理技術規范
- DB31/T 858-2015鋼渣粉混凝土砌塊應用技術規程
- DB31/T 677-2021木制品制造業職業病危害預防控制規范
- DB31/T 668.1-2012節能技術改造及合同能源管理項目節能量審核與計算方法第1部分:總則
- DB31/T 631-2012公共汽車燃油消耗定額
- DB31/T 601-2019地理標志產品金山蟠桃
- DB31/T 329.1-2019重點單位重要部位安全技術防范系統要求第1部分:展覽館、博物館
- DB31/T 309-2015梨樹栽培技術規范
- DB31/T 1438.1-2023用水定額第1 部分:農業
- 大氣污染治理的國內外比較研究
- 駕考三力測試題庫附答案
- 2025屆天津市蘆臺一中高三一模-化學試卷
- 蘇教版數學一年級下冊(2024)第七單元觀察物體(一)綜合素養測評 A 卷(含答案)
- 市政道路工程施工組織設計方案
- 活動策劃服務投標方案(技術方案)
- 2024年版豬場員工勞動合同模板3篇
- Unit 6 Section A 1a-2c 說課課件2024-2025學年人教版英語八年級下冊
- 2024年中國養老產業商學研究報告-銀發經濟專題
- 保衛管理員三級練習題
- DBJ51T033-2014 四川省既有建筑電梯增設及改造技術規程
評論
0/150
提交評論