




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年江蘇省連云港市普通高校對口單招數學第三輪測試卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(10題)1.A.
B.
C.
D.
2.直線L過(-1,2)且與直線2x-3y+5=0垂直,則L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0
3.以坐標軸為對稱軸,離心率為,半長軸為3的橢圓方程是()A.
B.或
C.
D.或
4.若a>b.則下列各式正確的是A.-a>-b
B.C.D.
5.已知a=(4,-4),點A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB
6.復數z=2i/1+i的共軛復數是()A.1+iB.1-iC.1/2+1/2iD.1/2-1/2i
7.已知角α的終邊經過點(-4,3),則cosα()A.4/5B.3/5C.-3/5D.-4/5
8.A.偶函數B.奇函數C.既不是奇函數,也不是偶函數D.既是奇函數,也是偶函數
9.若函數f(x)=x2+mx+1有兩個不同的零點,則實數m的取值范圍是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)
10.已知向量a=(1,k),b=(2,2),且a+b與a共線,那么a×b的值為()A.1B.2C.3D.4
二、填空題(5題)11.拋物線的焦點坐標是_____.
12.不等式|x-3|<1的解集是
。
13.已知一個正四棱柱的底面積為16,高為3,則該正四棱柱外接球的表面積為_____.
14.
15.函數y=3sin(2x+1)的最小正周期為
。
三、計算題(5題)16.設函數f(x)既是R上的減函數,也是R上的奇函數,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
17.解不等式4<|1-3x|<7
18.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調查居民生活垃圾的正確分類投放情況,現隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數據統計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
19.(1)求函數f(x)的定義域;(2)判斷函數f(x)的奇偶性,并說明理由。
20.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
四、證明題(2題)21.若x∈(0,1),求證:log3X3<log3X<X3.
22.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
五、簡答題(2題)23.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長
24.以點(0,3)為頂點,以y軸為對稱軸的拋物線的準線與雙曲線3x2-y2+12=0的一條準線重合,求拋物線的方程。
六、綜合題(2題)25.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
26.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.
參考答案
1.C
2.A由于直線與2x-3y+5=0垂直,因此可以設直線方程為3x+2y+k=0,又直線L過點(-1,2),代入直線方程得3*(-1)+2*2+k=0,因此k=-1,所以直線方程為3x+2y-1=0。
3.B由題意可知,焦點在x軸或y軸上,所以標準方程有兩個,而a=3,c/a=1/3,所以c=1,b2=8,因此答案為B。
4.C
5.D由,則兩者平行。
6.B共軛復數的計算.z=2i/1+i=2i(1-i)f(1+i)(1-i)=1+i復數z=2i/1的共扼復數是1-i.
7.D三角函數的定義.記P(-4,3),則x=-4,y=3,r=|OP|=,故cosα=x/r=-4/5
8.A
9.C一元二次方程的根的判別以及一元二次不等式的解法.由題意知,一元二次方程x2+mx+1=0有兩個不等實根,可得△>0,即m2-4>0,解得m>2或m<-2.故選C
10.D平面向量的線性運算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b與a共線.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,
11.
,因為p=1/4,所以焦點坐標為.
12.
13.41π,由題可知,底面邊長為4,底面對角線為,外接球的直徑即由高和底面對角線組成的矩形的對角線,所以外接球的直徑為,外接球的表面積為。
14.-2i
15.
16.解:(1)因為f(x)=在R上是奇函數所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數,t2-3t+1<-1所以1<t<2
17.
18.
19.
20.
21.
22.證明:根據該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即
23.
24.由題意可設所求拋物線的方程為準線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)
25.
26.解:(1)斜率k=5/3,設直線l的方程5x-3y+m=0,直線l經過點(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設圓心為C(a,b),圓與兩坐標軸相切,故a=±b又圓心在直線5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論