


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.2.關于x的一元二次方程x2﹣2x+k+2=0有實數根,則k的取值范圍在數軸上表示正確的是()A. B.C. D.3.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④4.下列運算正確的是()A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x35.2017年新設了雄安新區,周邊經濟受到刺激綜合實力大幅躍升,其中某地區生產總值預計可增長到305.5億元其中305.5億用科學記數法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10116.甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發的時間t(分)之間的關系如圖所示,下列結論:①甲步行的速度為60米/分;②乙走完全程用了32分鐘;③乙用16分鐘追上甲;④乙到達終點時,甲離終點還有300米其中正確的結論有()A.1個 B.2個 C.3個 D.4個7.下列計算中,錯誤的是()A.; B.; C.; D..8.如圖,在△ABC中,∠ACB=90°,點D為AB的中點,AC=3,cosA=,將△DAC沿著CD折疊后,點A落在點E處,則BE的長為()A.5 B.4 C.7 D.59.根據如圖所示的程序計算函數y的值,若輸入的x值是4或7時,輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣710.“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達終點10分鐘D.烏龜追上兔子用了20分鐘11.已知在四邊形ABCD中,AD//BC,對角線AC、BD交于點O,且AC=BD,下列四個命題中真命題是()A.若AB=CD,則四邊形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;C.若,則四邊形ABCD一定是矩形;D.若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.12.分別寫有數字0,﹣1,﹣2,1,3的五張卡片,除數字不同外其他均相同,從中任抽一張,那么抽到負數的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一組數據1,2,0,﹣1,x,1的平均數是1,則這組數據的中位數為_____.14.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.15.若一次函數y=kx﹣1(k是常數,k≠0)的圖象經過第一、三、四象限,則是k的值可以是_____.(寫出一個即可).16.化簡:x2-4x+4x17.如圖,直線,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按照此做法進行下去,點A8的坐標為__________.18.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有實根,則=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某商場以每件280元的價格購進一批商品,當每件商品售價為360元時,每月可售出60件,為了擴大銷售,商場決定采取適當降價的方式促銷,經調查發現,如果每件商品降價1元,那么商場每月就可以多售出5件.降價前商場每月銷售該商品的利潤是多少元?要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應降價多少元?20.(6分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?21.(6分)為了了解同學們每月零花錢的數額,校園小記者隨機調查了本校部分同學,根據調查結果,繪制出了如下兩個尚不完整的統計圖表.調查結果統計表組別分組(單位:元)人數A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bEx≥1202請根據以上圖表,解答下列問題:填空:這次被調查的同學共有人,a+b=,m=;求扇形統計圖中扇形C的圓心角度數;該校共有學生1000人,請估計每月零花錢的數額x在60≤x<120范圍的人數.22.(8分)填空并解答:某單位開設了一個窗口辦理業務,并按顧客“先到達,先辦理”的方式服務,該窗口每2分鐘服務一位顧客.已知早上8:00上班窗口開始工作時,已經有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務開始時刻024681012141618…每人服務時長2222222222…服務結束時刻2468101214161820…根據上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數),則當a最小取什么值時,窗口排隊現象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務結束的時刻為.23.(8分)在一個不透明的盒子里,裝有三個分別寫有數字6,-2,7的小球,它們的形狀、大小、質地等完全相同,先從盒子里隨機取出一個小球,記下數字后放回盒子,搖勻后再隨機取出一個小球,記下數字.請你用畫樹狀圖的方法,求下列事件的概率:兩次取出小球上的數字相同;兩次取出小球上的數字之和大于1.24.(10分)在中,,是邊的中線,于,連結,點在射線上(與,不重合)(1)如果①如圖1,②如圖2,點在線段上,連結,將線段繞點逆時針旋轉,得到線段,連結,補全圖2猜想、之間的數量關系,并證明你的結論;(2)如圖3,若點在線段的延長線上,且,連結,將線段繞點逆時針旋轉得到線段,連結,請直接寫出、、三者的數量關系(不需證明)25.(10分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當四邊形ENFM為矩形時,求證:BE=BN.26.(12分)某車間的甲、乙兩名工人分別同時生產只同一型號的零件,他們生產的零件(只)與生產時間(分)的函數關系的圖象如圖所示.根據圖象提供的信息解答下列問題:(1)甲每分鐘生產零件_______只;乙在提高生產速度之前已生產了零件_______只;(2)若乙提高速度后,乙的生產速度是甲的倍,請分別求出甲、乙兩人生產全過程中,生產的零件(只)與生產時間(分)的函數關系式;(3)當兩人生產零件的只數相等時,求生產的時間;并求出此時甲工人還有多少只零件沒有生產.27.(12分)2018年4月22日是第49個世界地球日,今年的主題為“珍惜自然資源呵護美麗國土一講好我們的地球故事”地球日活動周中,同學們開展了豐富多彩的學習活動,某小組搜集到的數據顯示,山西省總面積為15.66萬平方公里,其中土石山區面積約5.59萬平方公里,其余部分為丘陵與平原,丘陵面積比平原面積的2倍還多0.8萬平方公里.(1)求山西省的丘陵面積與平原面積;(2)活動周期間,兩位家長計劃帶領若干學生去參觀山西地質博物館,他們聯系了兩家旅行社,報價均為每人30元.經協商,甲旅行社的優惠條件是,家長免費,學生都按九折收費;乙旅行社的優惠條件是,家長、學生都按八折收費.若只考慮收費,這兩位家長應該選擇哪家旅行社更合算?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【詳解】設瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【點睛】本題主要考查分式的混合運算,找到相應的等量關系是解決本題的關鍵.2、C【解析】
由一元二次方程有實數根可知△≥0,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.【詳解】∵關于x的一元二次方程x2?2x+k+2=0有實數根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數軸上表示為:故選C.【點睛】本題考查了一元二次方程根的判別式.根據一元二次方程根的情況利用根的判別式列出不等式是解題的關鍵.3、B【解析】
由條件設AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數值可以求出∠EBC的度數和∠CEP的度數,則∠CEP=∠BEP,運用勾股定理及三角函數值就可以求出就可以求出BF、EF的值,從而可以求出結論.【詳解】解:設AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質的運用,相似三角形的判定及性質的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質的運用,解答時根據比例關系設出未知數表示出線段的長度是關鍵.4、B【解析】分析:根據完全平方公式、負整數指數冪,合并同類項以及同底數冪的除法的運算法則進行計算即可判斷出結果.詳解:A.(a﹣3)2=a2﹣6a+9,故該選項錯誤;B.()﹣1=2,故該選項正確;C.x與y不是同類項,不能合并,故該選項錯誤;D.x6÷x2=x6-2=x4,故該選項錯誤.故選B.點睛:可不是主要考查了完全平方公式、負整數指數冪,合并同類項以及同度數冪的除法的運算,熟記它們的運算法則是解題的關鍵.5、C【解析】解:305.5億=3.055×1.故選C.6、A【解析】【分析】根據題意和函數圖象中的數據可以判斷各個小題中的結論是否正確,從而可以解答本題.【詳解】由圖可得,甲步行的速度為:240÷4=60米/分,故①正確,乙走完全程用的時間為:2400÷(16×60÷12)=30(分鐘),故②錯誤,乙追上甲用的時間為:16﹣4=12(分鐘),故③錯誤,乙到達終點時,甲離終點距離是:2400﹣(4+30)×60=360米,故④錯誤,故選A.【點睛】本題考查了函數圖象,弄清題意,讀懂圖象,從中找到必要的信息是解題的關鍵.7、B【解析】分析:根據零指數冪、有理數的乘方、分數指數冪及負整數指數冪的意義作答即可.詳解:A.,故A正確;B.,故B錯誤;C..故C正確;D.,故D正確;故選B.點睛:本題考查了零指數冪、有理數的乘方、分數指數冪及負整數指數冪的意義,需熟練掌握且區分清楚,才不容易出錯.8、C【解析】
連接AE,根據余弦的定義求出AB,根據勾股定理求出BC,根據直角三角形的性質求出CD,根據面積公式出去AE,根據翻轉變換的性質求出AF,根據勾股定理、三角形中位線定理計算即可.【詳解】解:連接AE,∵AC=3,cos∠CAB=,∴AB=3AC=9,由勾股定理得,BC==6,∠ACB=90°,點D為AB的中點,∴CD=AB=,S△ABC=×3×6=9,∵點D為AB的中點,∴S△ACD=S△ABC=,由翻轉變換的性質可知,S四邊形ACED=9,AE⊥CD,則×CD×AE=9,解得,AE=4,∴AF=2,由勾股定理得,DF==,∵AF=FE,AD=DB,∴BE=2DF=7,故選C.【點睛】本題考查的是翻轉變換的性質、直角三角形的性質,翻轉變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.9、C【解析】
先求出x=7時y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當x=7時,y=6-7=-1,∴當x=4時,y=2×4+b=-1,解得:b=-9,故選C.【點睛】本題主要考查函數值,解題的關鍵是掌握函數值的計算方法.10、D【解析】分析:根據圖象得出相關信息,并對各選項一一進行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達終點,烏龜是用50分鐘到達終點,兔子比烏龜晚到達終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進行判斷是解題的關鍵.11、C【解析】A、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此A中命題不一定成立;B、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此B中命題不一定成立;C、因為由結合AO+CO=AC=BD=BO+OD可證得AO=CO,BO=DO,由此即可證得此時四邊形ABCD是矩形,因此C中命題一定成立;D、因為滿足本選項條件的四邊形ABCD有可能是等腰梯形,由此D中命題不一定成立.故選C.12、B【解析】試題分析:根據概率的求法,找準兩點:①全部等可能情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負數的概率是.故選B.考點:概率.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】
解:這組數據的平均數為2,
有(2+2+0-2+x+2)=2,
可求得x=2.
將這組數據從小到大重新排列后,觀察數據可知最中間的兩個數是2與2,
其平均數即中位數是(2+2)÷2=2.
故答案是:2.14、1-1.【解析】
將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據旋轉的性質可得出∠ECG=60°,結合CF=BD=2CE可得出△CEG為等邊三角形,進而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點睛】本題考查了全等三角形的判定與性質、勾股定理以及旋轉的性質,通過勾股定理找出方程是解題的關鍵.15、1【解析】
由一次函數圖象經過第一、三、四象限,可知k>0,﹣1<0,在范圍內確定k的值即可.【詳解】解:因為一次函數y=kx﹣1(k是常數,k≠0)的圖象經過第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案為1.【點睛】根據一次函數圖象所經過的象限,可確定一次項系數,常數項的值的符號,從而確定字母k的取值范圍.16、﹣x-2x【解析】
直接利用分式的混合運算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.17、(128,0)【解析】
∵點A1坐標為(1,0),且B1A1⊥x軸,∴B1的橫坐標為1,將其橫坐標代入直線解析式就可以求出B1的坐標,就可以求出A1B1的值,OA1的值,根據銳角三角函數值就可以求出∠xOB3的度數,從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點A2、A3…的坐標規律,最后求出A8的坐標.【詳解】點坐標為(1,0),
軸
點的橫坐標為1,且點在直線上
在中由勾股定理,得
,
在中,
.
.
.
.
故答案為.【點睛】本題是一道一次函數的綜合試題,也是一道規律試題,考查了直角三角形的性質,特別是所對的直角邊等于斜邊的一半的運用,點的坐標與函數圖象的關系.18、【解析】
因為方程有實根,所以△≥0,配方整理得(a+2b)2+(a﹣1)2≤0,再利用非負性求出a,b的值即可.【詳解】∵方程有實根,∴△≥0,即△=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,化簡得:2a2+4ab+4b2﹣2a+1≤0,∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,∴a+2b=0,a﹣1=0,解得a=1,b=﹣,∴=﹣.故答案為﹣.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)4800元;(2)降價60元.【解析】試題分析:(1)先求出降價前每件商品的利潤,乘以每月銷售的數量就可以得出每月的總利潤;(2)設每件商品應降價x元,由銷售問題的數量關系“每件商品的利潤×商品的銷售數量=總利潤”列出方程,解方程即可解決問題.試題解析:(1)由題意得60×(360-280)=4800(元).即降價前商場每月銷售該商品的利潤是4800元;(2)設每件商品應降價x元,由題意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于減少庫存,則x=60.即要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應降價60元.點睛:本題考查了列一元二次方程解實際問題的銷售問題,解答時根據銷售問題的數量關系建立方程是關鍵.20、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解析】
(1)根據正方形的性質,可得EF=CE,再根據∠CEF=∠90°,進而可得∠FEH=∠DCE,結合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質可得FH=ED;(2)設AE=a,用含a的函數表示△AEF的面積,再利用函數的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當AE=2時,△AEF的面積最大.【點睛】本題考查了正方形性質、矩形性質以及全等三角形的判斷和性質和三角形面積有關的知識點,熟記全等三角形的各種判斷方法是解題的關鍵.21、50;28;8【解析】【分析】1)用B組的人數除以B組人數所占的百分比,即可得這次被調查的同學的人數,利用A組的人數除以這次被調查的同學的人數即可求得m的值,用總人數減去A、B、E的人數即可求得a+b的值;(2)先求得C組人數所占的百分比,乘以360°即可得扇形統計圖中扇形的圓心角度數;(3)用總人數1000乘以每月零花錢的數額在范圍的人數的百分比即可求得答案.【詳解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)×360°=40%×360°=144°.即扇形統計圖中扇形C的圓心角度數為144°;(3)1000×=560(人).即每月零花錢的數額x元在60≤x<120范圍的人數為560人.【點睛】本題考核知識點:統計圖表.解題關鍵點:從統計圖表獲取信息,用樣本估計總體.22、(1)5;(2)5n﹣4,na+6a.【解析】
(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,則第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,第n﹣1個“新顧客”服務結束的時間為(5+n)a+a=na+6a.【詳解】(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;故答案為:5;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,∴第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,∴第n個“新顧客”服務開始的時間為(6+n)a,∴第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,∵每a分鐘辦理一個客戶,∴第n﹣1個“新顧客”服務結束的時間為(5+n)a+a=na+6a,故答案為:5n﹣4,na+6a.【點睛】本題考查了列代數式,用代數式表示數的規律,解題關鍵是要讀懂題目的意思,根據題目給出的條件,尋找規律,列出代數式.23、(1);(2).【解析】
根據列表法或樹狀圖看出所有可能出現的結果共有多少種,再求出兩次取出小球上的數字相同的結果有多少種,根據概率公式求出該事件的概率.【詳解】第二次第一次6﹣276(6,6)(6,﹣2)(6,7)﹣2(﹣2,6)(﹣2,﹣2)(﹣2,7)7(7,6)(7,﹣2)(7,7)(1)P(兩數相同)=.(2)P(兩數和大于1)=.【點睛】本題考查了利用列表法、畫樹狀圖法求等可能事件的概率.24、(1)①60;②.理由見解析;(2),理由見解析.【解析】
(1)①根據直角三角形斜邊中線的性質,結合,只要證明是等邊三角形即可;②根據全等三角形的判定推出,根據全等的性質得出,(2)如圖2,求出,,求出,,根據全等三角形的判定得出,求出,推出,解直角三角形求出即可.【詳解】解:(1)①∵,,∴,∵,∴,∴是等邊三角形,∴.故答案為60.②如圖1,結論:.理由如下:∵,是的中點,,,∴,,∴,,,∴,∵,∴,∵線段繞點逆時針旋轉得到線段,∴,在和中,∴,∴.(2)結論:.理由:∵,是的中點,,,∴,,∴,,,∴,∵,∴,∵線段繞點逆時針旋轉得到線段,∴,在和中,∴,∴,而,∴,在中,,∴,∴,∴,即.【點睛】本題考查了三角形外角性質,全等三角形的性質和判定,直角三角形的性質,旋轉的性質的應用,能推出是解此題的關鍵,綜合性比較強,證明過程類似.25、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由已知條件易得∠EAG=∠FCG,AG=GC結合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB,AE=CN,從而可得AB=CB,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《杰出演示的策略》課件
- 貨車租賃合同的市場適應性研究
- 服裝生產合作協議
- 雙語客運值班員乘車憑證課件
- 鐵道機車專業教學鄭州鐵路張中央58課件
- 鐵路工程安全技術石家莊鐵路40課件
- 《Python程序設計基礎》課件 第八章 文件與異常
- 中國中小學食品安全課件
- 大學生職業規劃大賽《應用化學專業》生涯發展展示
- 專利合作開發合同格式
- 湖北省武漢市2025屆高中畢業生四月調研考試語文試卷及答案(武漢四調)
- 2025年無錫市錫山環保能源集團招聘筆試參考題庫含答案解析
- 《平行四邊形的面積》 教學課件
- 招投標評分索引表模板
- 運輸風險防控記錄表
- 紅星美凱龍商場管理制度全套
- Q∕GDW 12151-2021 采用對接裝置的輸電線路流動式起重機組塔施工工藝導則
- 《敘事式心理治療》精品PPT
- 高速鐵路知識PPT通用PPT課件
- 鋁合金門窗工程監理質量控制圖冊
- MyPowerS3100系列以太網交換機配置手冊V4.0
評論
0/150
提交評論