




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、Lecture 3: Some basic statistical concepts, statistics and distributionsParameters and statisticsParametric versus non-parametric statisticsProperties of statisticsSome useful statisticsThe normal distributionThe Students t distributionConfidence intervals for sample statisticsStatistical power and
2、experimental design19991Bio 4118 Applied BiostatisticsParameters, statistics and estimatorsparameters characterize populations (which in general cannot be completely enumerated)statistics (estimators) are estimates of population parameters obtained from a finite sample (e.g., the sample mean is an e
3、stimate of the population mean)The process by which one obtains an estimate of a population parameter from a finite sample is called an estimation procedure.PopulationSample19992Bio 4118 Applied BiostatisticsParametric statistical analysisEstimating model parameters based on a finite sample and infe
4、rring from these estimates the values of the corresponding population parametersTherefore, parametric analysis requires relatively restrictive assumptions about the relationships between the sample and the population, i.e. about the distributions from which samples are drawn and the nature of the dr
5、awing (e.g., normal distributions and random sampling)XYSamplePopulationInferenceX19993Bio 4118 Applied BiostatisticsNon-parametric statistical analysisCalculation of model parameters based on a finite sample, but no inference to corresponding population parametersTherefore, non-parametric analysis
6、requires relatively minimal assumptions about the relationships between the sample and the population (e.g. normal distributions of sampled variables not required)19994Bio 4118 Applied BiostatisticsProperties of statisticsAccuracy: an accurate statistic is one for which its value, averaged over samp
7、les from the same population, is “close” to the true population parameter.Sample PopulationXXLess accuratestatisticMore accuratestatistic19995Bio 4118 Applied BiostatisticsProperties of statisticsConsistency: the more consistent a statistic is, the faster it approaches the true population value as s
8、ample size increases.SamplePopulationXLessconsistentMoreconsistentXSample size (N)19997Bio 4118 Applied BiostatisticsA comparison of some well-known statisticsFrequencyRange19998Bio 4118 Applied BiostatisticsStatistics of dispersion: the rangerange: defined by largest and smallest values in the samp
9、leIt is a simple statistic, but is biased because it consistently underestimates the population (parametric) range.FrequencyPopulation rangeSample range199910Bio 4118 Applied BiostatisticsDispersionThree frequency distributions with identical means and sample sizes but different dispersion patterns1
10、99911Bio 4118 Applied BiostatisticsDispersion statistics: variance, standard deviation and the coefficient of variationVariance: average squared deviation from the meanStandard deviation: square root of the varianceCoefficient of variation: standard deviation divided by the sample mean X 100199912Bi
11、o 4118 Applied BiostatisticsThe standard normal distributionobtained by scaling the distribution by converting observed values to standard normal deviates (Z-scores)resulting distribution has = 0, 2 = 1Probability-3-2-10123ZScaled (Z-transformed)Unscaled199914Bio 4118 Applied BiostatisticsThe standa
12、rd normal distribution68% of the population within 1 of the mean96% within 2 of the meanZProbability-3-2-10123 1 2199915Bio 4118 Applied BiostatisticsConfidence intervals for observations: estimation problemsReplacing and by their sample estimates can lead to serious biases.Simulation: sample standa
13、rd normal population and for each sample, calculate sample mean and variance. Then calculate CI based on sample mean and variance, and see what proportion of the true population fall within the CIs.Average 5%Proportion (%) of the populationoutide 95% CI N =10000100200300400500020406080100Mean = 5% N
14、umber of trials 199917Bio 4118 Applied BiostatisticsConfidence intervals for observations: estimation problemsWhen sample size is large, estimated CIs are very close to true CIs.However, when sample size is small, estimated CIs are far too small.050100150020406080100Proportion (%) of the populationo
15、utide 95% CI N = 5Mean = 23.8% Number of trials 199918Bio 4118 Applied BiostatisticsConfidence intervals for observations: estimation problemsEstimated CIs based on Z-scores approach true CIs as sample size increases, but, for small N, are highly biased (i.e. are smaller than they should be).Sample
16、sizeCIs calculated using Z1010010001000099%99.9%95%90%75%50%305070809095989999.899.9Proportion (%) of population199919Bio 4118 Applied BiostatisticsThe Students t-distributiondistribution of difference between sample mean and population mean divided by the standard error of the meanconverges towards
17、 standard normal distribution when N is largemore peaked and with longer tails at small N-5-4-3-2-10123450.00.10.20.30.4-5-4-3-2-1012345t0.00.10.20.30.4Probabilitydf=2df=1000199920Bio 4118 Applied BiostatisticsConfidence intervals based on t-scoresWhen sample size is small, calculate CIs by replacin
18、g Z with the critical value of the t distribution.This helps, but CIs are still too small when sample sizes are very small.CIs calculated using t10100100010000305070809095989999.899.999%99.9%95%90%75%50%Sample sizeProportion (%) of population199921Bio 4118 Applied BiostatisticsConfidence intervals f
19、or meansinterval that has a certain probability of including the value of the true mean of the populationsmaller than CI for observationsProbabilityorSample meansObservations199922Bio 4118 Applied BiostatisticsConfidence intervals for the medianbased on the binomial distribution b(x) with p = 0.5.Ou
20、t of a sample of n = 10, what is the probability of obtaining only x = 1, 2, n observations below the median?Because b(x) is discrete, confidence intervals wont be exactly at the 1- level.1- a CI: what range of values would we expect the true population median to lie 100(1-a) percent of the time?97.86% CI for the median given by values 1 and 9,89.08% CI for the median given by values 2 and 8012345678910Probability199924Bio 4118 Applied BiostatisticsConfidence interva
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《腎臟泌尿超聲》課件
- 2025金融借款合同協(xié)議書
- 理發(fā)門面出租合同協(xié)議
- 電力通信專線合同協(xié)議
- 玉米收割勞務合同協(xié)議
- 瓦工轉包合同協(xié)議書范本
- 電梯采購加裝合同協(xié)議
- 電力施工擔保合同協(xié)議
- 生物質供氣合同協(xié)議
- 環(huán)保核查服務合同協(xié)議
- 第三節(jié)鋼筋混凝土排架結構單層工業(yè)廠房結構吊裝課件
- 普通高中學生綜合素質評價檔案
- 產品路標規(guī)劃-綜述2.1
- 2023年鄭州工業(yè)應用技術學院單招考試面試題庫及答案解析
- 《電子制造技術-電子封裝》配套教學課件
- 二月份循證護理查房課件
- JJF(湘) 09-2018 純水-超純水系統(tǒng)監(jiān)測儀表(電導率)計量校準規(guī)范-(高清現(xiàn)行)
- 延安市幼兒教師心理健康現(xiàn)狀調查分析
- 中藥斗譜排序
- 數(shù)學建?!叭绾芜M行人員分配”問題
評論
0/150
提交評論