2021-2022學年山西省朔州市高三下學期第一次聯考數學試卷含解析_第1頁
2021-2022學年山西省朔州市高三下學期第一次聯考數學試卷含解析_第2頁
2021-2022學年山西省朔州市高三下學期第一次聯考數學試卷含解析_第3頁
2021-2022學年山西省朔州市高三下學期第一次聯考數學試卷含解析_第4頁
2021-2022學年山西省朔州市高三下學期第一次聯考數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為( )ABCD2執行如下的程序框圖,則輸出的是( )ABCD3若復數(為虛數單位),則的共軛復數的模為( )AB4C2D4已知實數,滿足約束條件,則的取值范圍是( )ABCD5

2、已知集合,ByN|yx1,xA,則AB( )A1,0,1,2,3B1,0,1,2C0,1,2Dx1x26已知函數,若曲線在點處的切線方程為,則實數的取值為( )A-2B-1C1D27若變量,滿足,則的最大值為( )A3B2CD108 “完全數”是一些特殊的自然數,它所有的真因子(即除了自身以外的約數)的和恰好等于它本身.古希臘數學家畢達哥拉斯公元前六世紀發現了第一、二個“完全數”6和28,進一步研究發現后續三個完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為( )ABCD9設全集集合,則( )ABCD10設不

3、等式組表示的平面區域為,若從圓:的內部隨機選取一點,則取自的概率為( )ABCD11設函數的導函數,且滿足,若在中,則( )ABCD12已知函數,若所有點,所構成的平面區域面積為,則( )ABC1D二、填空題:本題共4小題,每小題5分,共20分。13已知,滿足約束條件則的最小值為_.14設直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為 .15某同學周末通過拋硬幣的方式決定出去看電影還是在家學習,拋一枚硬幣兩次,若兩次都是正面朝上,就在家學習,否則出去看電影,則該同學在家學習的概率為_.16已知數列是各項均為正數的等比數列,若,則的最小值為_.三、

4、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四棱錐中,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.18(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數),求曲線交點的直角坐標.19(12分)設橢圓的左右焦點分別為,離心率,右準線為,是上的兩個動點,()若,求的值;()證明:當取最小值時,與共線20(12分)已知拋物線:的焦點為,過上一點()作兩條傾斜角互補的直線分別與交于,兩點,(1)證明:直線的斜率是1;(2)若,成等比數列,求直線的方程.21(12

5、分)如圖,在四棱錐中,是等邊三角形,.(1)若,求證:平面;(2)若,求二面角的正弦值22(10分)某大學開學期間,該大學附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結算方案:方案規定每日底薪100元,外賣業務每完成一單提成2元;方案規定每日底薪150元,外賣業務的前54單沒有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業務量,現隨機抽取100天的數據,將樣本數據分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機選取一天,估計這一天該快餐店的騎手的人均日外賣業務量不少于65單的概率;(2)從以往統計數據看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.

6、若甲、乙、丙、丁四名騎手分別到該快餐店應聘,四人選擇日工資方案相互獨立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數據用該組區間的中點值代替)參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】使用不同方法用表示出,結合平面向量的基本定理列出方程解出【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題2A【解析】列出每一步算法循環,可得出輸出結果的值.【詳解】滿足,執行第一次循環,;成立,執行第二次循環

7、,;成立,執行第三次循環,;成立,執行第四次循環,;成立,執行第五次循環,;成立,執行第六次循環,;成立,執行第七次循環,;成立,執行第八次循環,;不成立,跳出循環體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.3D【解析】由復數的綜合運算求出,再寫出其共軛復數,然后由模的定義計算模【詳解】,故選:D【點睛】本題考查復數的運算,考查共軛復數與模的定義,屬于基礎題4B【解析】畫出可行域,根據可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,三點所圍成的三角形及其內部,如圖中陰影部分

8、,而可理解為可行域內的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內的點到原點距離的最小值,此時,點到原點的距離是可行域內的點到原點距離的最大值,此時.所以的取值范圍是.故選:B【點睛】本小題考查線性規劃,兩點間距離公式等基礎知識;考查運算求解能力,數形結合思想,應用意識.5A【解析】解出集合A和B即可求得兩個集合的并集.【詳解】集合xZ|2x31,0,1,2,3,ByN|yx1,xA2,1,0,1,2,AB2,1,0,1,2,3故選:A【點睛】此題考查求集合的并集,關鍵在于準確求解不等式,根據描述法表示的集合,準確寫出集合中的元素.6B【解析】求出函數的導數,利用切線方程通過f(0

9、),求解即可;【詳解】f (x)的定義域為(1,+),因為f(x)a,曲線yf(x)在點(0,f(0)處的切線方程為y2x,可得1a2,解得a1,故選:B【點睛】本題考查函數的導數的幾何意義,切線方程的求法,考查計算能力7D【解析】畫出約束條件的可行域,利用目標函數的幾何意義求解最大值即可【詳解】解:畫出滿足條件的平面區域,如圖示:如圖點坐標分別為,目標函數的幾何意義為,可行域內點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規劃問題,考查數形結合思想,屬于中檔題8C【解析】先求出五個“完全數”隨機分為兩組,一組2個,另一組3個的基本事件總數為,再求

10、出6和28恰好在同一組包含的基本事件個數,根據即可求出6和28不在同一組的概率.【詳解】解:根據題意,將五個“完全數”隨機分為兩組,一組2個,另一組3個,則基本事件總數為,則6和28恰好在同一組包含的基本事件個數,6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數的應用.9A【解析】先求出,再與集合N求交集.【詳解】由已知,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.10B【解析】畫出不等式組表示的可行域,求得陰影部分扇形對應的圓心角,根據幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內部的區域,

11、如圖所示,因為直線,的傾斜角分別為,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.11D【解析】根據的結構形式,設,求導,則,在上是增函數,再根據在中,得到,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以 ,因為當時,即,所以,在上是增函數,在中,因為,所以,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.12D【解析】依題意,可得,在上單調遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,所以,在上單調遞增,則在上的值域為,因為所有點

12、所構成的平面區域面積為,所以,解得,故選:D.【點睛】本題考查利用導數研究函數的單調性,理解題意,得到是關鍵,考查運算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,構成的三角形及其內部,當直線過點時,取得最小值.故答案為:【點睛】本小題主要考查利用線性規劃求目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.14【解析】不妨設雙曲線,焦點,令,由的長為實軸的二倍能夠推導出的離心率.【詳解】不妨設雙曲線,焦點,對稱軸,由題設知,因為的長

13、為實軸的二倍, ,故答案為.【點睛】本題主要考查利用雙曲線的簡單性質求雙曲線的離心率,屬于中檔題.求解與雙曲線性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯系.求離心率問題應先將 用有關的一些量表示出來,再利用其中的一些關系構造出關于的等式,從而求出的值.15【解析】采用列舉法計算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學習只有1種情況,即(正,正),故該同學在家學習的概率為.故答案為:【點睛】本題考

14、查古典概型的概率計算,考查學生的基本計算能力,是一道基礎題.1640【解析】設等比數列的公比為,根據,可得,因為,根據均值不等式,即可求得答案.【詳解】設等比數列的公比為,等比數列的各項為正數,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數列值的最值問題,解題關鍵是掌握等比數列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17 (1)見證明;(2) 【解析】(1) 取的中點,連接,要證平面平面,轉證平面,即證, 即可;(2) 以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出

15、平面與平面的法向量,代入公式,即可得到結果.【詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,且因為,所以,所以,又因為,平面,平面,所以平面.又因為平面,所以平面平面.(2)因為,為等邊三角形,所以,又因為,所以,在中,由正弦定理,得:,所以.以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則,即,令,則平面的一個法向量為,依題意,平面的一個法向量所以故二面角的余弦值為.【點睛】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直

16、數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.18【解析】利用極坐標方程與普通方程、參數方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標為.【點睛】本題考查極坐標方程與普通方程,參數方程與普通方程間的互化,考查學生的計算能力,是一道容易題.19()()證明見解析【解析】由與,得,的方程為設,則,由得 ()由,得, , 由、三式,消去,并求得,故(),當且僅當或時,取最小值,此時,故與共線20(1)見解析;(2)【解析】(1)設,由已知,得

17、,代入中即可;(2)利用拋物線的定義將轉化為,再利用韋達定理計算.【詳解】(1)在拋物線上,設,由題可知,(2)由(1)問可設:,則, , ,即(*),將直線與拋物線聯立,可得:,所以,代入(*)式,可得滿足,:.【點睛】本題考查直線與拋物線的位置關系的應用,在處理直線與拋物線位置關系的問題時,通常要涉及韋達定理來求解,本題查學生的運算求解能力,是一道中檔題.21(1)詳見解析(2)【解析】(1)如圖,作,交于,連接.因為,所以是的三等分點,可得.因為,所以,因為,所以,因為,所以,所以, 因為,所以,所以,因為平面,平面,所以平面.又,平面,平面,所以平面.因為,、平面,所以平面平面,所以平

18、面.(2)因為是等邊三角形,所以.又因為,所以,所以.又,平面,所以平面.因為平面,所以平面平面.在平面內作平面.以B點為坐標原點,分別以所在直線為軸,建立如圖所示的空間直角坐標系,則,所以,.設為平面的法向量,則,即,令,可得.設為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.22(1)0.4;(2);(3)應選擇方案,理由見解析【解析】(1)根據頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業務量不少于65單的頻率,即可估算其概率;(2)根據獨立重復試驗概率求法,先求得四人中有0人、1人選擇方案的概率,再由對立事件概率性質即可求得至少有兩名騎手選擇方案的概率;(3)設騎手每日完成外賣業務量為件,分別表示出方案的日工資和方案的日工資函數解析式,即可計算兩種計算方式下的數學期望,并根據數學期望作出選擇.【詳解】(1)設事件為“隨機選取一天,這一天該快餐店的騎手的人均日外賣業務量不少于65單”.根據頻率分布直方圖可知快餐店的人均日外賣業務量不少于65單的頻率分別為,估計為0.4.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論