課件1計算機視覺system_第1頁
課件1計算機視覺system_第2頁
課件1計算機視覺system_第3頁
課件1計算機視覺system_第4頁
課件1計算機視覺system_第5頁
免費預覽已結束,剩余42頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、朱振峰信息科學研究所 九教B611, 計算機視覺 Computer Vision 計算機視覺 Computer Vision Lecture 9-4 Dynamitic System Filter Based (Kalman Fliter) for Object TrackingRudolf Emil KalmanBorn 1930 in HungaryBS and MS from MITPhD 1957 from ColumbiaFilter developed in 1960-61 Object Tracking Object Tracking Object Tracking Object

2、 Tracking Object Tracking Object Tracking Object Tracking Object TrackingKalman filter for tracking Model for trackingObject has internal state Capital indicates random variableSmall represents particular valueObtained measurements in frame i areValue of the measurement General Steps of TrackingPred

3、iction: What is the next state of the object given past measurements Data association: Which measures are relevant for the state?Correction: Compute representation of the state from prediction and measurements.TrackingpredictcorrectOnly immediate past mattersMeasurements depend only on current state

4、Important simplifications Fortunately it doesnt limit to much!Independence AssumptionsLinear Dynamic ModelsState is linear transformed plus Gaussian noiseRelevant measures are linearly obtained from state plus Gaussian noiseSufficient to maintain mean and standard deviationA really simple exampleWe

5、are on a boat at night and lost our positionWe know: star positionConstant Velocityp is position of boat, v is velocity of boatstate is We only measure position so Marc makes a measuremen2,Conditional Density FunctionJan makes a measurementConditional Density Functio2,Combi

6、ne measurements & variance2Conditional Density FunctionOnline weighted average!Kalman filterJust some applied math.A linear dynamic system: f(a+b) = f(a) + f(b)Noisy data in hopefully less noisy out.But delay is the price for filtering.Predict CorrectKF operates by Predicting the new st

7、ate and its uncertaintyCorrecting with the new measurementpredictcorrectWhat is it used for?Tracking missilesTracking heads/hands/drumsticksExtracting lip motion from videoFitting Bezier patches to point dataLots of computer vision applicationsEconomicsNavigationA really simple exampleWe are on a bo

8、at at night and lost our positionWe know: move with constant velocity star positionBut suppose were movingNot all the difference is error. Some may be motionKF can include a motion modelEstimate velocity and positio2Process ModelDescribes how the state changes over timeThe state for the

9、 first example was scalarThe process model was “nothing changes”A better model might be constant velocity motion Measurement Model“What you see from where you are” not“Where you are from what you see”Constant Velocityp is position of boat, v is velocity of boatstate is We only measure position so St

10、ate and Error CovarianceFirst two moments of Gaussian processError CovarianceProcess State (Mean)The Process ModelUncertainty over intervalState transitionProcess dynamicsDifficult to determineMeasurement ModelMeasurement uncertaintyMeasurementmatrixMeasurement relationship to statePredict (Time Upd

11、ate)a priori state, error covariance, measurementMeasurement Update (Correct)Kalman gaina posteriori state and error covarianceMinimizes posteriori error covarianceThe Kalman GainWeights between prediction and measurements to posteriori error covarianceFor no measurement uncertainty State is deduced only from measurementThe Kalman GainSimple univariate (scalar) examplea posteriori state and error covarianceSummaryPREDICTCORRECTEstimating a ConstantThe state transition matrix The measurem

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論