超材料的前沿技術研究及應用-Metasurface-ZL-II_第1頁
超材料的前沿技術研究及應用-Metasurface-ZL-II_第2頁
超材料的前沿技術研究及應用-Metasurface-ZL-II_第3頁
超材料的前沿技術研究及應用-Metasurface-ZL-II_第4頁
超材料的前沿技術研究及應用-Metasurface-ZL-II_第5頁
已閱讀5頁,還剩52頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、Metasurfaces: Physics & Applications - II超材料的前沿技術研究及應用AcknowledgementsKey collaboratorsYuanbo Zhang, Qiong WuKey contributorsShaojie Ma, Ziqi Miao, He-Xiu Xu, Tong Cai, Shiwei Tang, Shiyi Xiao, Shulin Sun, Qiong HeNSFC Shanghai Sci. Tech. MOSTMinistry of Education MIM metasurfaces and graphene metas

2、urfaces (THz)Tunable microwave metasurfaces Multifunctional metasurfacesWave-diffusion metasurfacesAngular dispersions ConclusionsWhat is MIM Metasurface?MIM metasurface can control reflectance and phase on resonanceChange geometry/materialReflectance modulationPhase modulationmetal/insulator/metalM

3、etalSpacerPatternApplications 1:Reflectance ModulationMIM metasurface triggers many applications through reflectance modulationPerfect absorption N. I. Landy, et. al. PRB 78, 241103(2008)Active modulationYu Yao, et. al. Nano Lett. 14, 6526 (2014)Perfect absorptionJM Hao et. al. APL 96 251104 (2010)N

4、a Liu, et. al. NL 10, 2342(2010)Color PrintingA.S. Roberts, et. al. Nano Lett. 14, 783 (2014)Application 2: Phase ModulationMIM metasurface triggers many applications through phase control J.M. Hao, et. al. PRL. 99, 063908 (2007)polarization controlanomalous reflectionS.L. Sun, et. al. Nat Mater 11,

5、 426-431(2012)flat-lens focusingAnders Pors, et. al. Nano Lett. 13, 829 (2013)hologramsWei Ting Chen, et. al. Nano Lett. 14, 225 (2014)Do we really understand the system physically ?So many interesting applications of MIM systemsI. Conflicting models for MIM systemsJ.M. Hao, et. al. APA 87, 281 (200

6、7)APL (2003) H.T. Chen, et. al. OE 20, 7165 (2012); PRL (2010)The system treated as a wholeMetallic layers treated separately1. Magnetic resonance model2. Interference modelWhich one is correct ?II. Why diversified functionalities ? Why and when certain functionality ? Guidelines for designing MIM m

7、etasurfaces with desired functionalitiesChangegeometry/materialMetalSpacerPatternReflectance modulationNa Liu, et. al. Nano Lett. 10, 2342(2010)Phase modulationS.L. Sun, et. al. Nat Mater 11, 426-431(2012)OutlineEigen resonant modes in MIM(PRB 2016)Complete functionality phase diagram for MIM (PRL 2

8、015)Applications: Graphene MIM for wide-range phase modulation (PRX 2015) Mode-expansion method for simplest MIM Scattering properties can be analytically studiedGood agreements between MEM, FTDT and experimentsCoupling parametersConditions:SubwavelengthThin-slitSimplifications under single-mode app

9、roximationEffective admittancePhysics well captured by the analytical expressionOriginal admittanceModification by couplingsResonanceThin-spacer limit: Lateral resonanceThick-spacer limit: Vertical FP modehd 1hd 1Analytical expressions for f and Q A transition from magnetic resonance to FP resonance

10、 occurs with increasing hThe intriguing resonance behaviors are universal !Picture valid for general metasurfacesGeneral definition for S parameters:Fundamental-mode distribution: II. Why diversified functionalities ? Why and when certain functionality ? Guidelines for designing MIM metasurfaces wit

11、h desired functionalitiesChangegeometry/materialMetalSpacerPatternReflectance modulationNa Liu, et. al. Nano Lett. 10, 2342(2010)Phase modulationS.L. Sun, et. al. Nat Mater 11, 426-431(2012)Coupled-mode theory for MIM metasurfaceS. Fan et. al., J. Opt. Soc. Am. A 20, 569(2003)W. Suh et. al., IEEE J.

12、 Quantum Electron.,QE 40,1511(2004)Response:CMT model describes response through lumped Qr and Qametal/insulator/metalCoupled mode theory:MetalSpacerPatternThe competitions between two Q factors generate a variety of physical effectsReflectancemodulationPhasemodulation = 0Coupled-mode analyses: Gene

13、ric phase diagramQuestion: what determines Q factors? Coupled-mode analysis on MIM metasurfaceQr factor:Concrete expressions of Q factors are obtained Analytical expressions for Q factorsQa factor: (perturbation)Total EnergyLossin spacerLoss in metalMa et al, PRB (2016)Tailor MIM Metasurface Through

14、 Structural/Material Tuning Response:Qr factor:Qa factor:MIM propertiesTwo Q factorsStructure & MaterialsTailor MIM Metasurfaces via tuning hTuning h can dramatically change the property of a metasurfaceQr factor:Qa factor:Critical parameterTailor MIM metasurfaces via tuning material lossQr factor:Q

15、a factor:Tune dielectric loss:Tuning material can dramatically change the property of a metasurfaceGate-controlled graphene :Miao, PRX 5, 041027 (2015)Our structure Graphene + MIM Combining Graphene with reflective meta-surface Working at THz domain The transmission port is blocked - crucial ! Top-g

16、ating graphene using Ion-GelMetallic sheetExperimental results As voltage increases, reflection amplitudes first decreases to 0, then increases to 1 Phase behaviors change from a magnetic (360 variation) to electric (180) resonance Phase modulation covering +/- 180 degrees Complete phase diagrams (E

17、xpt.) - different spacers85um 60um 40um Critical point determined by structure geometry Some system dose not support critical transitionRole of graphene upon gating(Fitting FDTD with CMT)Effects of gating graphene:increasinghas little effect on drives the system to transit from an under-damped to an

18、 over-damped resonatorGating graphene beaks the subtle balance between intrinsic and radiation losses!Full-range active phase control (Expt.) Two slightly different pixels lead to full-range phase modulation at a frequency interval Previous mechanism can never work, due to intrinsic limitationsEABRe

19、-interpreting previous works with our phase diagramPhase-modulationPolarization controlGradient MSPerfect absorbers MIM metasurfaces and graphene metasurfaces (THz)Tunable microwave metasurfaces Multifunctional metasurfacesWave-diffusion metasurfacesAngular dispersions ConclusionsIssues with passive

20、 metasurfacesFunctionality locked in passive metasurface Dispersion issue limits the performance and bandwidthDistorted phase gradient Undesired reflection modesLimited efficiency and bandwidthPassive metasurface has narrow bandwidth Why performance always deteriorated even in “broad-band” sample?Ph

21、ase distribution cannot maintain at other frequencies Tunable meta-atoms can help With varactor diode incorporated, phase of our meta-atom can be controlled precisely by external biasing voltageCan realize any phase distribution controlled by external voltages Single-mode reflection; Very high effic

22、iency; Truly broad bandActive metasurface with dispersion compensated Xu, Sci. Rep. 6: 38255 (2016)On-state: A SPP couplerOff-state: A specular reflectorActive metasurface for functionality switching Xu, Sci. Rep. 6: 38255 (2016)Active meta-lenses Precisely control the local phase of each “meta-atom

23、”Make the dispersion-induced aberrations corrected; make focal length the same for different frequencies.Make the focal point actively tunable at a single frequency H.X. Xu et. al, Appl. Phys. Lett. 109 193506 (2016)MIM metasurfaces and graphene metasurfaces (THz)Tunable microwave metasurfaces Multi

24、functional metasurfacesWave-diffusion metasurfacesAngular dispersions ConclusionsWhy multifunctional metasurfaces ?Integration systemsMultifunctional meta-devicesMetasurfacesDevice miniaturization Functionality diversified ACS Photonics 4, 1906 (2017)SR 6, 27628 (2016) (X. Chen)Issues with existing

25、approaches 1) Functionality cross-talking2) Low efficiencies 1. Merge two structures Exhibiting similar functionalities LSA 3, e197 (2014)(Bolzhevolni)SR 5,9605 (2015) (T. J. Cui)2. Single anisotropic meta-atomOur motivations Meta-devices with distinct functionalities with high efficiency and low cr

26、oss-talking Meta-atoms with polarization-controlled responsesReflection-typeTransmission-typeFull-space1) Reective multifunctional metasurfaces Focusing lens for E | y PW-SW convertor E | xAdv. Optical Mater. 5, 1600506 (2017)Structural tuning High-efficiencyreflective meta-atom2) Transmissive multi

27、functional metasurfaces4-layer meta-atomCoupling between different layers forms a wide transparency bandTransmission-phase covers 360range Adv. Optical Mater. 5, 1600506 (2017)High-efficiencytransmissive meta-atom Working efficiency (72%)Transmissive bifunctional meta-deviceAdv. Optical Mater. 5, 16

28、00506 (2017) Focusing lens for E | y; Beam deflector for E | x3) Full-space multifunctional devicesPhys. Rev. Applied 8, 034033 (2017) (Editors suggestion)Special meta-atomContinuous stripes on bottom block x-polarized waveFP-resonance enhances transmission of y-polarized waveMeta-device 1: Deflecto

29、rPhys. Rev. Applied 8, 034033 (2017) (Editors suggestion)Anomalous reflectorAnomalous refractorMeta-device 2: LensPhys. Rev. Applied 8, 034033 (2017)(Editors suggestion)Transmissive lensReflective lensMeta-device 3: A bifunctional devicePhys. Rev. Applied 8, 034033 (2017) (Editors suggestion)Anomalo

30、us reflectorTransmissive lensArbitrary full-space devices realizable via designing appropriate phasesMIM metasurfaces and graphene metasurfaces (THz)Tunable microwave metasurfaces Multifunctional metasurfacesWave-diffusion metasurfacesAngular dispersions ConclusionsWhy we need diffusion?Importance o

31、f diffusion in stealth/cloaking applications1. Objects made by metals suffer from strong specular reflections2. Being easily detected Signals dispersed to all directionsas uniform as possible Scatterings are too small to be detected Issues with available cloaking approachesTransformation-optics cloa

32、ks bulky, extreme parameters Absorbers narrow bandwidth, heat generation(2006)(2010)Cui, LSA, 2016Coding metasurfaces: Phase “bits” arranged in certain “coding sequence” Merits: ultrathin, compatible to complex shapes Issues: Complicated optimization to determine the “coding sequence”Our motivations

33、Polarization independent - working for arbitrary incident polarizationDeterministic design approach - no need to do optimizations Robust diffusion to all angles - not only suppress specular reflectionsMeta-atom: Resonance (LP)Bit: Uniform phaseSequence: Optimized random Meta-atom: PB meta-atom (CP)Bit: Parabolic phaseSequence: Moderately random Our design approach I: PB meta-atomPB mechanism release the polarization dependence , wide-band, high-efficiencyII: “Bit” with parabolic phase profileUniform/gradient phase converts incident K to a single-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論