外文翻譯---利用一種新的合成物殼聚糖生物吸附劑去除Cr(Ⅵ)_第1頁
外文翻譯---利用一種新的合成物殼聚糖生物吸附劑去除Cr(Ⅵ)_第2頁
外文翻譯---利用一種新的合成物殼聚糖生物吸附劑去除Cr(Ⅵ)_第3頁
外文翻譯---利用一種新的合成物殼聚糖生物吸附劑去除Cr(Ⅵ)_第4頁
外文翻譯---利用一種新的合成物殼聚糖生物吸附劑去除Cr(Ⅵ)_第5頁
已閱讀5頁,還剩31頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、附錄外文譯文利用一種新的合成物殼聚糖生物吸附劑去除Cr(W)Veeram.Boddu;Krishnaiahabburi;Jonathanl.Talbott;Edgard.SmithIllinois(美國州名),Champaign,陸軍建筑工程研究實驗室,61826-9005,Illinois,Champaign,Illinois大學,Illinois自然資源部,Illinois廢棄物管理與研究中心,61820利用一種葡(萄)糖胺生物聚合物殼聚糖涂膜在氧化鋁陶瓷上制備新型殼聚糖復合生物吸附劑,由高溫熱裂解、孔性計、電鏡掃描、X射線光電子能譜法測定其特征在25進行間歇等溫吸附平衡和連續塔吸附試驗以

2、檢驗它從鍍鉻設施廢水中去除六價鉻,并研究pH值,硫酸鹽、氯離子對吸附的影響。鉻(VI)飽和的生物吸附劑可以在0.1M氫氧化鈉溶液再生。對比目前的調查結果與文獻報道表明氧化鋁表面的殼聚糖具有更大的鉻(VI)吸附能力。另外,實驗平衡數據擬合Langmuir和Freundlich等溫吸附式和得出的等溫參數值,Langmuir模型所得最大的容量是153.85毫克/克殼聚糖。概述從采礦、電鍍設備、發電設備、電子器件制造單位和皮革廠排放的廢水中金屬離子濃度往往高于當地排放標準,這些廢水中含有有毒重金屬如鉻、鎘、鉛、汞、鎳、銅等。在采礦、電鍍、工業加工、核燃料合成、軍事基地分局周圍的地下水含有害成分.根據環

3、保法規,污水或水中含有重金屬在排放之前一律進行處理。化學沉淀,氧化/還原,機械過濾、離子交換、膜分離、碳吸附等各種處理方法廣泛應用于去除廢水中的有毒重金屬。近年來生物吸附被公認為減少地表水和工業廢水金屬污染的一種有效方法。生物吸附是指利用生物材料從溶液中去除金屬或非金屬單質,化合物和離子.Olin和Bailey等開展了廣泛的資料研究,以找出潛在的低成本吸附劑處理重金屬污染的水和重金屬廢水.他們鑒別了12種潛在吸附劑去除鉛、鎘、銅、鋅、汞,其中殼聚糖具有最高的金屬離子的吸附容量。殼聚糖是從蝦、螃蟹、某些真菌、甲殼類生物等萃取得到的甲殼素通過脫乙酰作用獲得.殼聚糖在自然界中不僅豐富廉價,同時它又是

4、一個良好的重金屬吸附劑,殼聚糖可以螯合超過甲殼素5-6倍量的金屬,這是因為在殼聚糖里因脫乙酰作用存在自由氨基。研究人員先后多次企圖改進殼聚糖以使其更容易傳質和釋放活性官能團來增強吸附能力。嫁接功能團到原殼聚糖主鏈來進一步提高其吸附性能。Kawamura,Hsein和Rorrer等研究了多孔殼聚糖和化學交聯殼聚糖粒對重金屬的吸附,與天然殼聚糖相比,多孔殼聚糖顆粒、化學交聯殼聚糖粒子、冠醚殼聚糖、浸微殼聚糖,金屬離子絡合殼聚糖樹脂明顯提高了吸附能力。volesky,Holan,Waseand和Forster討論了幾種生物吸附劑對金屬包括放射性的物質鈾、釷等的吸附能力,認為這些生物吸附劑應對材料進一

5、步改進和向商品化發展。它們的天然形式是軟性的和其水溶液有一種結塊或形成凝膠的傾向.此外,自然形成的活性官能團不易速效吸附,而在工藝流程設計過程中該基團對傳遞金屬污染物起著十分重要的作用,它還提供應用處理中所需的物質支持和增大金屬結合基團接納金屬的可達性。因此,本次研究試圖制備一種將殼聚糖涂在氧化鋁表面的生物吸附劑。這種由氧化鋁為載體的生物吸附劑由高溫熱裂解、孔性計、電子顯微鏡掃描、X射線光電子能譜測定其特征。在Brunauer-Emmett-Teller(BET)吸附等溫線基礎上,它的表面積、孔徑、孔徑分布由氮孔率決定。這項研究的目的是制備一種殼聚糖合成物,了解其吸附特征,檢驗合成物和天然樣本

6、的去除鉻(VI)的能力以及在間歇和連續模型中的等溫吸附平衡時的吸附容量。另外,還應獲得與Langmuir和Freundlich等溫吸附式擬合的實驗平衡數據和等溫參數值,并用同樣試劑進行塔吸附試驗,以及pH值對鉻(VI)吸附的影響程度,也將研究殼聚糖生物吸附劑在0.1M氫氧化鈉溶液中的再生能力。實驗內容化學樣品來自Aldrich化工股份有限公司(Milwaukee,WI)的重鉻酸鉀、活性氧化鋁、殼聚糖、1,5二苯卡巴,其中活性氧化鋁是標準級150目brockmanI。由Fisher化工(FairLawn,NJ)生產的氯化鉀、氫氧化鈉。來自EM科學(Gibbstown,NJ)的硫酸鉀。所有的鹽類都

7、是ACS(美國化學學會)認證等級或更好。所有溶液由ASTM(美國材料試驗學會)的去離子水制備(18MQ-H2OgradeBarnsteadNanopure)。生物吸附劑準備由殼聚糖凝膠覆蓋陶瓷的生物吸附劑的制備過程如下:將150目氧化鋁陶瓷在110C烘箱干燥4小時后在室溫下用草酸攪拌混合4小時進行表面涂層,然后從酸中過濾出的氧化鋁用去離子水洗兩次,再在70C真空烘箱中干燥24小時,將約50克中等分子量殼聚糖徐徐加入1000毫升質量分數為10%草酸溶液并攪拌。加熱至40-50C使其容易混合形成酸和殼聚糖的粘性混合物(凝膠)。取大約500毫升的殼聚糖凝膠用水稀釋2倍并加熱至40-50C,將約500

8、克的酸處理后的氧化鋁緩慢加入稀釋凝膠并攪拌約36小時之后靜臵澄清。再用Whatman41濾紙在真空條件下過濾出上清液,將得到的合成物用去離子水洗兩次,然后在55C真空烘箱中干燥24小時,最后在涂過一層生物吸附劑的氧化鋁上進行重復涂層處理以增加殼聚糖的負載量,大約用時24小時。合成過程中過量的草酸用氫氧化鈉溶液中和處理.再將兩次涂膜的混合物用Whatman41濾紙過濾,并用2500毫升的去離子水洗,及過濾之后在55C真空烘箱干燥48小時左右,轉移到玻璃瓶后存放在干燥器內。生物吸附劑的特征生物吸附劑特性包括:(1)熱解,(2)孔徑分析,(3)電子顯微鏡掃描,(4)XPS分析。熱裂解技術測定氧化鋁負

9、載的殼聚糖。測量生物吸附劑在裂解中減少的重量得到在氧化鋁上負載的殼聚糖的量。將準確稱量后的干燥生物吸附劑放入瓷瓶內放入一個750C馬弗爐內6小時,然后在干燥空氣中冷卻,稱量得到生物吸附劑減輕的重量。用空瓷瓶、純氧化鋁、酸處理氧化鋁、純殼聚糖和生物吸附劑做各進行三次的對照實驗。由孔性計確定的表面積和孔徑。使用一個微型的BET測定儀在零下196下超純度的氮氣條件下測定生物吸附劑的表面積、孔容和孔徑,它們的平均值分別是125.24sq.m/g、0.1775cm3/g、71.125。電子顯微鏡掃描,以電子顯微鏡研究表面形態。殼聚糖生物吸附劑的電子顯微鏡掃描(SEMs)由環境掃描電子顯微鏡(XL30-E

10、SEM-FEG,FEI公司,Hillsboro,0R,U.S.A.)獲得,見圖1(a)、(b)。圖1放大100倍(a)和800倍(b)的殼聚糖生物吸附劑的掃描電子顯微鏡像X射線光電子能譜殼聚糖生物吸附劑XPS譜在PHI模型5400AXISUltraKratos分析儀(Manchester,U.K.)得出,列于圖2。圖3是在鉻液反應后吸附劑的XPS譜,顯示了吸附鉻的2個高峰。圖2Cr(ni)Cr(VI)Min:OMax:1D5BindingEnvrgy(V)Cr2p3/2圖3等溫吸附平衡研究適量重鉻酸鉀溶解在去離子水得到的Cr(VI)溶液中的間歇等溫吸附平衡。用原子吸收光譜法和紫外光譜儀測定溶液

11、的金屬濃度,在25士0.5進行大量的100至500毫克殼聚糖生物吸附劑的等溫平衡研究,pH4.0的鉻溶液(50毫升)與殼聚糖生物吸附劑在200RPM的攪拌水浴24小時后達到平衡,之后從溶液中用Whatman41濾紙過濾出該生物吸附劑,分析濾液中的金屬含量。每單位生物吸附劑的金屬吸附量qe(毫克),由下式式得出:其中Ci和Ce分別是初始和平衡時的濃度(毫克/升),M是生物吸附劑的干重(克),V是溶液體積(升)分別在不同的pH值下得出pH在平衡吸附試驗中對吸附過程的影響,以及檢驗負離子即硫酸鹽、氯化物鉻(VI)吸附的影響.實驗中硫酸鹽、氯化物濃度控制在1毫摩爾水平。塔吸附試驗在內徑約1厘米長30厘

12、米床容為30cm3的玻璃柱內進行動態吸附試驗,實驗中柱完全泡在用一個恒溫neslab和masterflex泵的250.5C循環水浴中,塔底采用孔隙100微米聚乙烯濾盤托住吸附劑。當柱充滿干燥吸附劑時震蕩以使空隙和空氣量減到最少,將塔溶液作適當稀釋后用分光光度計測定不同時期的濃度,當塔中鉻飽和后泵入空氣清洗剩余水溶液以使其在0.1M氫氧化鈉溶液再生,并在解吸過程的第5、10、20、30分鐘進行采樣分析。再生后,用去離子水清洗塔以備以后吸附時使用。分析過程在酸性介質中測量鉻(六)與1,5-二苯卡巴反應形成紅紫色化合物可以測定六價鉻測定。通過紫外可見分光光度計測量得到該化合物的最大吸光度在540納米

13、,用重鉻酸鉀標準溶液標定六價鉻,為了顯色將等溫吸附樣品用0.2摩爾硫酸調整pH到1.00.3,則樣品濃度根據鉻(六)標準溶液的吸光度與濃度關系曲線得到。精確研究顯示,分析程序的再生性優于1毫克/升。結論涂膜過程制備了一種穩定的、wheatish彩色的顆粒生物吸附劑合成物。方案一生物吸附劑的性質前面講述了通過高溫熱裂解的方法測定覆蓋在150目氧化鋁上的草酸和殼聚糖的平均量。結果表明,純氧化鋁損失約2.1%,草酸處理過的凈重減少4.5%,單一殼聚糖膜氧化鋁凈損失7.8%,而二次殼聚糖膜的生物吸附劑凈重減少21.1%,純殼聚糖在750裂解后殘留重量0.7%。殼聚糖從螃蟹殼中由酸堿提取甲殼素通過作用獲

14、得的,所以該殘留物可能是少量的碳酸鈣混入甲殼素而產生的,但殘留量很少,沒必要為此在殼聚糖凈重上進行修正。草酸這個羧酸在氧化鋁與殼聚糖之間起橋梁作用.正如方案1中,一個羧酸基與氧化鋁形成較強的螯合連環酯,而另外一個與殼聚糖的-NH3+形成離子(或電子)鍵。生物吸附劑中的草酸還可與-OH、-CH2OH或者-NH2形成的氫鍵。圖1(a)的殼聚糖氧化鋁的掃描電子顯微鏡像(SEMS)表明顆粒的平均粒徑為100-150微米,且合成物顆粒一般為球形。一些顆粒由單個粒子聚集成團的,生物吸附劑的細孔面積僅為3.3m2/g,而總表面積達到了105.2m2/g,這表明吸附劑相對來說是無孔的。在圖2的XPS光譜中表明

15、在結合能為289eV(C1s)、535eV(O1s)、402eV(N1s),和78eV(Al2p)時碳、氧、氮、和鋁為表面觀測到的主要元素。在此結合能的基礎上,殼聚糖的一半表面可以用-CH2OH、-CO和-NH2鑒別。在圖3中展示了在鉻溶液中暴光后的鉻的光譜,它表明鉻已部分地(約67%)轉化為鉻(III),此結果與Dambies等觀測結果一致。平衡等溫線在25C和pH為4條件下鉻(六)的等溫吸附平衡的結果如圖4。圖4等溫先表明增大吸附質的平衡濃度可以促進吸附。生物吸附劑的吸附容量為153.8毫克鉻(六)/克殼聚糖。有資料報道,每單位質量的天然殼聚糖吸附劑吸附鉻(六)的最大值為27毫克,Ni2+

16、印記殼聚糖樹脂為51毫克,而化學交聯和非交聯殼聚糖分別為78毫克和50毫克,這里報道的兩次涂膜的生物吸附劑大大好于其他物質可以看出:生物吸附劑殼聚糖合成物比天然殼聚糖有更大的吸附能力,即涂膜過程促進了殼聚糖的吸附能力,這可能是因為增大了表面積和促進了鉻離子向殼聚糖結合部位的傳遞。圖5表明pH值對生物吸附劑吸附鉻(六)的影響。圖5從圖中看出,低pH有利于吸附而增大pH值時吸附作用降低,dantas和schmuhl等也得到了類似的結果。鉻(六)以幾種穩定的形式存在。如CrOrHCrO-、.和2727CrO2-,HCrO-,HCrO-,和CrO2-,它的存在形式主要取決于鉻離子的濃度和溶液的2727

17、44pH值在較低的pH值時,吸附劑由于氨基而帶正電,而吸附質中的鉻酸鹽離子以陰離子形式存在從而形成吸附劑與吸附質的靜電吸引。因此,在較低的pH值時可增大吸附若增大溶液的pH值則吸附劑會受到非質子化和吸附容量的降低.當超過某一pH值,僅僅吸附過程回影響從水介質中去除鉻(VI)。因此所有數據都是在pH值為4.0時得到的。在圖6中表示氯化物和硫酸鹽以及兩者的交互作用對鉻(VI)吸附作用的影響。心NoAnionsSulieAChloride丁rO*0204080100bquilibniimccmccniralicmofCt皿秋l3eP氨EZU-Q缶亠sqlMlUAyuo圖6陰離子也會對生物吸附劑吸附C

18、r2O72-有輕微的抑制,可以預計,單價氯離子對吸附的抑制會小于二價的硫酸根離子,但氯化物與硫酸鹽兩者的抑制作用并未出現疊加.在別的文獻中也有報道,一般與陰離子競爭表面結合部位的吸附都有類似的抑制。Gao等人提出殼聚糖像氧離子或氯離子在樣品溶液中餓離子交換機制一樣定量地吸附某些金屬,這意味著交互作用發生在殼聚糖的氨基功能團與Cr2O7-之間,而且這種交互作用主要是靜電引力.Fu等證實在紅外線與紫外線光譜之間存在靜電引力.XPS研究提供了涉及物質吸附部位的認別,并發現鉻(六)吸附發生在高分子物質的胺官能團上,如方案2所示:211ClbOHIICkOHO.NJiO0CHQIJO+HjO200?雖然

19、離子(或電子)吸引是吸附劑與吸附質的主要因素,但其他因素在低和高pH值的條件下會對吸附產生重要影響例如在低和高pH值時就可能出現金屬吸附質或與殼聚糖羥基和羧基的羥基化后的吸附質進行氫鍵結合在低和高的pH值時鉻存在其他不同形式,而且這些形式歸因于不同pH值時的吸附曲線,所以殼聚糖生物吸附劑對鉻的總吸收量取決于:1離子吸引力,2氫鍵結合,3較弱的范德華力。Langmuir和Freundlich模型Langmuir和Freundlich模型是描述液相與固相之間的吸附組成的最簡單和最常用的等溫線.Langmuir模型假定單層吸附,而Freundlich模式是經驗公式.對數據進行分析得到Langmuir

20、和Freundlich參q_(fbC&數,Langmuir模型的數學公式是:1L-式中Ce是溶液中吸附劑的平衡濃度(mg/l),qe是平衡時吸附劑的吸附量(mg/l),Q是飽和吸附量(mg/l),b是吸附系數,有Langmuir模型對平衡濃度和吸附量作直線得出參數Q和b.在坐標紙上的Ce/qe對Ce的直線表明:殼聚糖生物吸附劑對鉻(VI)的吸附符合Langmuir模型,從實驗中推斷出的Q和b的值分別為153.85mg/L和0.023L/mg,相關的R2的值為0.9896.Freundlich模型表示為:式中K和1/n是Freundlich等溫常數,從模型中得到它們分別為0.9565和1.404

21、7,其相關的R2值為0.9972。塔吸附研究圖7表示的是在pH值為4.0和25條件下生物吸附劑頭兩個周期從綜合廢水中吸附鉻(六)的實驗曲線。0,80,60,40.20050100150250Numberofbed匚yclc11Initialtone.Cycle1Initialcone.=105nig/L圖7:從圖中明顯可以看出當開始濃度(C1)約100mg/L是床容數在40以下都無鉻流出,當床容數大于40時,塔出水濃度逐漸上升,直到約200床容是達到進水濃度.相對于進水濃度增長減慢的出水濃度表明吸附的動力減少了,當生物吸附劑鉻飽和時,泵入空氣排出塔中溶液吸附塔在流量2.6ml/min,0.1M

22、的NaOH溶液中可以再生,其解吸曲線如圖8所示。圖8:0盂p在NaOH溶液中,解吸的最大值發生在第5床容,而且在底20床容時完成再生,再生床用于之后的鉻的吸附,它的第二周期的曲線如圖7。對周期一和周期二比較發現,生物吸附劑對廢水中的鉻(六)的吸附容量并未減少.在pH10時,殼聚糖的鉻(六)解吸主要是由于殼聚糖帶正電的胺基團.圖9表示的鍍鉻設施廢水的鉻(六)吸附曲線。圖9此廢水中包含有鐵(13mg/l),鎘(0.0065mg/l),鉛(48mg/l),硫酸(69mg/l),硝酸鹽(llmg/l),氰化物(0.32mg/l),以及磷酸鹽(17mg/l)。比較綜合出水的結果,廢水開始稀釋至鉻約100

23、ppm并調整pH為4.0,則用周期一和周期而分別代表純生物吸附劑和再生生物吸附劑的吸附曲線如圖10。相應的未稀釋水樣(Cl=1253ppm,pH=2.0)的吸收和解吸曲線見圖11和圖12。圖1120II.D00d袖U1三辭三-3可以看出塔出水(C0)直到第15床容都無鉻的出現,然后隨初始濃度緩慢增大濃度直到第45床容,它的最大解吸量發生在第3床容.在高初始濃度和低pH值時生物吸附劑顯示了更大的吸附能力。綜上所述,涂膜過程改進了殼聚糖對六價鉻的吸附能力,所以應更多地活化生物吸附劑合成物的活性部位,而塔的吸附一解吸研究表明新研究合成的殼聚糖生物吸附劑可用于去除工業廢水中的鉻(VI)。感謝作者感謝來

24、自Dr.RichardHaas和GrantDEFG02-91-ER45439美國能源部部分資助的Illionois大學材料精細分析中心提供的X-射線光電子能譜分析,同時感謝ScottJ.Robinson,成像技術集團,Backman尖端科技研究所,以及Illionois大學掃描電子顯微鏡像的幫助。參考文獻(略)原文RemovalofHexavalentChromiumfromWastewaterUsingaNewCompositeChitosanBiosorbentTOC o 1-5 h zVEERAM.BODDU,*,f,IKRISHNAIAHABBURI,豐,JONATHANL.TALBO

25、TT,豐ANDEDGARD.SMITHf,t,IU.S.ArmyConstructionEngineeringResearchLaboratories,Champaign,Illinois61826-9005,andIllinoisWasteManagementandResearchCenter,IllinoisDepartmentofNaturalResources,UniversityofIllinoisatUrbanasChampaign,Champaign,Illinois61820Anewcompositechitosanbiosorbentwaspreparedbycoatingc

26、hitosan,alucosaminebiopolymer,ontoceramicalumina.Thecompositebioadsorbentwascharacterizedbyhigh-temperaturepyrolysis,porosimetry,scanningelectronmicroscopy,andX-rayphotoelectronspectroscopy.Batchisothermalequilibriumandcontinuouscolumndsorptionexperimentswereconductedat25Ctoevaluatethebiosorbentfort

27、heremovalofhexavalentchromiumfromsyntheticaswellasfieldsamplesobtainedfromchromeplatingfacilities.TheeffectofpH,sulfate,andchlorideiononadsorptionwasalsoinvestigated.ThebiosorbentloadedwithCr(VI)wasregeneratedusing0.1Msodiumhydroxidesolution.Acomparisonoftheresultsofthepresentinvestigationwiththoser

28、eportedintheliteratureshowedthatchitosancoatedonaluminaexhibitsgreateradsorptioncapacityforchromium(VI).Further,experimentalequilibriumdatawerefittedtoLangmuirandFreundlichadsorptionisotherms,andvaluesoftheparametersoftheisothermsarereported.TheultimatecapacityobtainedfromtheLangmuirmodelis153.85mg/

29、gchitosan.IntroductionProcesswastestreamsfromminingoperations,metal-platingfacilities,powergenerationfacilities,electronicdevicemanufacturingunits,andtanneriesoftencontainmetalionsatconcentrationsabovelocaldischargelimits.Thesewastestreamscontaintoxicheavymetalssuchaschromium,cadmium,lead,mercury,ni

30、ckel,andcopper.Groundwateraroundmanymining,plating,andprocessingindustries,nuclearfuelcomplexes,andmilitarybasesoftengetscontaminatedwithhazardouscomponents.Tomeetenvironmentalregulations,effluentsorwatercontaminatedwithheavymetalsmustbetreatedbeforedischarge.Chemicalprecipitation,oxidation/reductio

31、n,mechanicalfiltration,ionexchange,membraneseparation,andcarbonadsorptionareamongthevarietyoftreatmentprocesseswidelyusedfortheremovaloftoxicheavymetalsfromthewastestreams.Inrecentyearsbiosorptionhasbeenrecognizedasaneffectivemethodofreductionofmetalcontaminationinsurfacewaterandinindustrialeffluent

32、s(1).Biosorptionisdefinedastheremovalofmetalormetalloidspecies,compounds,andparticulatesfromsolutionbybiologicalmaterial(2).Olinetal.(3)andBaileyetal.(4)conductedanextensiveliteraturesearchtoidentifylowcostsorbentswithpotentialfortreatmentofheavymetalcontaminatedwaterandwastestreams.Theyidentified12

33、potentialsorbentsforlead,cadmium,copper,zinc,andmercury.Amongthesorbentsidentified,chitosanhasthehighestsorptioncapacityformetalions(5).Chitosanisobtainedbydeacetylationofchitin,whichisextractedfromshrimp,crab,somefungi,andothercrustaceans.Chitosanisnotonlyinexpensiveandabundantinnature,butitalsoisa

34、goodadsorbentforheavymetals.Chitosanchelatesfivetosixtimesgreateramountsofmetalsthanchitin.Thisisattributedtothefreeaminogroupsexposedinchitosanbecauseofdeacetylationofchitin(6).Severalinvestigatorshaveattemptedtomodifychitosantofacilitatemasstransferandtoexposetheactivebindingsitestoenhancetheadsor

35、ptioncapacity.Graftingspecificfunctionalgroupsontonativechitosanbackboneallowsitssorptionpropertiestobeenhanced(7).Kawamuraetal.(8),Rorreretal.(9),andHseinandRorrer(10)evaluatedthesorptionofheavymetalsontheporouschitosanbeadsandchemicallycross-linkedbeadsofchitosan.Chitosanazacrownethers(11,12),chit

36、osanimpregnatedwithmicroemulsions(13),andchitosanresinsimprintedwithmetalions(14)showedremarkableincreaseinadsorptioncapacitycomparedtoanuntreatedsample.VoleskyandHolan(1)andWaseandForster(15)discussedseveralbiosorbentsandtheirmetalbindingcapacityincludingthatforradioactivespeciessuchasuraniumandtho

37、rium.Ithasalsobeenrecognizedthatthesebiosorbentsneedfurthermodificationanddevelopmentforcommercialization.Biosorbents,intheirnaturalform,aresoftandhaveatendencyinaqueoussolutionstoagglomerateortoformagel.Inaddition,theactivebindingsitesarenotreadilyavailableforsorptionintheirnaturalform.Transportoft

38、hemetalcontaminantstothebindingsitesplaysaveryimportantroleinprocessdesign.Itwasalsonecessarytoprovidephysicalsupportandincreasetheaccessibilityofthemetalbindingsitesforprocessapplications.Hence,anattemptwasmadeinthepresentinvestigationtoprepareabiosorbentbycoatingchitosanonalumina.Analuminasupporte

39、dbiosorbentischaracterizedinthispaperbyhigh-temperaturepyrolysis,scanningelectronmicroscopy,andX-rayphotoelectronspectroscopy.Thesurfacearea,porediameter,andporediameterdistributionaredeterminedwiththenitrogenporosimeteronthebasisofBrunauer-Emmett-Teller(BET)adsorptionisotherm.Theobjectivesofthisstu

40、dyweretoprepareacompositechitosanbiosorbent,tocharacterizethesorbent,andtoevaluatetheremovalofhexavalentchromiumfromsyntheticaswellasfieldsamples.TheadsorptioncapacityofthebiosorbentwasevaluatedbystudyingtheequilibriumadsorptionisothermsofCr(VI)inbatchandflowmodes.Further,theequilibriumdatawerefitte

41、dtoLangmuirandFreundlichadsorptionisotherms,andthevaluesofparametersoftheisothermswereobtained.Columnadsorptionexperimentsarealsoperformedwithafieldsample.Inaddition,theeffectofpHontheextentofadsorptionofCr(VI)onthebiosorbentwasexamined.Regenerabilityofthecompositebiosorbentusing0.1Msodiumhydroxidea

42、lsowasexamined.ExperimentalSectionChemicals.Potassiumdichromate,activatedalumina,chitosan,and1,5-dipheny-lcarbazidewereprocuredfromAldrichChemicalCo.(Milwaukee,WI).TheactivatedaluminawasBrockmanI,standardgrade,150mesh.PotassiumchlorideandsodiumhydroxidewereobtainedfromFisherChemicals(FairLawn,NJ).Po

43、tassiumsulfatewasobtainedfromEMScience(Gibbstown,NJ).AllsaltswereACScertifiedgradeorbetter.AllsolutionswerepreparedwithASTMtypeIdeionizedwater(18M-H2OgradeBarnsteadNanopure).PreparationofBiosorbent.Compositechitosanbiosorbentwaspreparedbycoatingtheceramicsubstratewithchitosangelasfollows.Ceramicalum

44、ina150meshwasdriedinovenfor4hat110C.Thedriedaluminawasstirredwithoxalicacidfor4hatroomtemperaturetocoatthesurface.Thealuminawasfilteredfromtheacid,washedtwicewithDIwater,anddriedinanovenat70Cundervacuumfor24h.About50gofmediummolecularweightchitosanwasslowlyaddedto1000mLof10wt%oxalicacidsolutionwiths

45、tirring.Theacidandchitosanformaviscousmixture(gel),whichmustbeheatedto40-50Ctofacilitatemixing.Approximately500mLofthechitosangelwasdiluted2-foldwithwaterandheatedto40-50C.About500goftheacidtreatedaluminawasslowlyaddedtothedilutedgelandstirredforabout36h.Thecontentswereallowedtosettle,andtheclearliq

46、uidwasfilteredoutundervacuumwithWhatman41filterpaper.ThecompositebiosorbentwaswashedtwicewithDIwateranddriedintheovenat55Cundervacuumfor24h.Thecoatingprocesswasthenrepeatedontheoncecoatedbiosorbenttoincreaseloadingofchitosanonthealumina.Twenty-fourhwereusedinthesecondcoatingprocess.Excessoxalicacidi

47、nthecompositebiosorbentwasneutralizedbytreatmentwithaqueousNaOH.ThemixturewasthenfilteredwithWhatman41filterpaper,washedwith_2500mLofDIwater,andfiltered.Thetwice-coatedbiosorbentwasthendriedintheovenundervacuumat55Cforabout48handtransferredtoaglassbottleforstorageinadesiccator.CharacterizationoftheB

48、iosorbent.Characterizationofthecompositebiosorbentincludedthefollowing:(a)pyrolysis,(b)porosimetry,(c)scanningelectronmicroscopy,and(d)XPSanalysis.(a)DeterminationofChitosanLoadingonAluminabyPyrolysisTechnique.Theamountofchitosancoatedonthealuminawasobtainedbymeasuringtheweightlossofbiosorbentfrompy

49、rolysis.Driedbiosorbentwasaccuratelyweighedintoaceramicboatandplacedinamufflefurnace.Thebiosorbentwasmuffledfor6hat750C.Afterwardtheovenwascooledindryair,andweightlossofthebiosorbentwasobtained.Controlexperimentswithemptyboat,purealumina,acid-treatedalumina,purechitosan,andbiosorbentwerealsocarriedo

50、ut.Alltheexperimentswereconductedintriplicate.(b)DeterminationofSurfaceAreaandPoreDiameterbyPorosimetry.Surfacearea,porevolume,andporediameterofthecompositebiosorbentweredeterminedwithaMicromeriticsBETinstrumentbymeansofadsorptionofultrapuritynitrogenat-196C.Averagevaluesofthesepropertiesare125.24sq

51、.m/g,0.1775cm3/g,and71.125respectively.ScanningElectronMicroscopy.Surfacemorphologywasstudiedwithanelectronmicroscope.Thescanningelectronmicrographs(SEMs)ofcompositechitosanbiosorbent,obtainedwithanEnvironmentalScanningElectronMicroscope(XL30-ESEM-FEG,FEICompany,Hillsboro,OR,U.S.A.),arepresentedinFi

52、gurel(a),(b).FIGURE1.Scanningelscironmicrographsofthecompositechn.osanblorbeniat(訓ioexandbookinagnirEcation.X-rayPhotoelectronSpectroscopyAnXPSspectrumofthecompositechitosanbiosorbent,obtainedonaPHImodel5400AXISUltraKratosAnalyticalinstrument(Manchester,U.K.),isshowninFigure2.Figure3isanXPSspectrumo

53、fthesorbentafterexposuretochromiumsolution.Figure3showsthechromium2ppeaks.EquilibriumAdsorptionIsotherms.BatchequilibriumadsorptionisothermstudieswereconductedwithaqueoussolutionsofCr(VI)preparedbydissolvingappropriateamountsofpotassiumdichromateindeionizedwater.Theconcentrationsofthepreparedmetalso

54、lutionswereverifiedusingatomicabsorptionspectroscopyandaUV-Visspectrometer.Equilibriumisothermstudieswereconductedat25(0.5Cwiththemassofcompositebiosorbentvariedfrom100to500mg.Chromiumsolutions(50mL)atpH4.0wereallowedtoequilibratewiththecompositebiosorbentfor24hinanoscillatingwaterbathagitatedat200r

55、pm.Afterequilibration,thebiosorbentwasfilteredfromthesolution(Whatman41filterpaper),andthefiltratewasanalyzedformetals.Theamountofthemetaladsorbed(mg)perunitmassofbiosorbent,qe,wasobtainedbyusingtheequationwhereCiandCeareinitialandequilibriumconcentrationsinmg/L,Misthedrymassofbiosorbentingrams,andV

56、isvolumeofsolutioninliters.EquilibriumadsorptionexperimentswereconductedatvariouspHstoevaluatethepHprofileoftheadsorptionprocess.Theeffectofcompetinganions,namelysulfateandchloride,ontheadsorptionofCr(VI)wasalsoevaluated.Sulfateandchlorideconcentrationsweremaintainedat1millimolarlevelsintheexperimen

57、ts.ColumnAdsorptionExperiments.Dynamicflowadsorptionexperimentswereconductedinaglasscolumnofdimensionsabout1cminternaldiameterby30cmlength.Thebedvolumeofthecolumnwas30cm3.Thecolumnwasfullyjacketedallowingexperimentstobecarriedoutatconstanttemperatureof25(0.5Cusingacirculatingwaterbath,aNeslabThermos

58、tat,andaMasterflexPump.Columnendswerefittedwithpolyethylenefilterdisksof100fmporesizetoretainthecompositematerial.Columnswereshakenwhilebeingpackedwithdriedadsorbenttominimizevoidvolumesandairgaps.Concentrationsofcolumneffluentsobtainedatvariousintervalsweremonitoredspectrophotometricallyaftermaking

59、appropriatedilutions.Afterthecolumnwassaturatedwithchromium,itwasdrainedofremainingaqueoussolutionbypumpingairpriortoregenerationwith0.1Msodiumhydroxidesolution.Samplesat5,10,20,and30minintervalsfromthestartofthedesorptionprocesswerecollectedforanalysis.Afterregeneration,thecolumnwaswashedwithDIwate

60、rbeforeuseinsubsequentadsorptionruns.AnalyticalProcedure.Hexavalentchromiumwasdeterminedcolorimetrically(16)bymeasurementoftheintensered-violetcomplexformedbyreactionofchromium(VI)with1,5-diphenylcarbazideinanacidicmedium.ACary3EUVvisiblespectrophotometerwasusedtoobtainmeasurementsofthechromophoreco

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論