




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知關于的方程在區間上有兩個根,且,則實數的取值范圍是( )ABCD2已知中,角、所對的邊分別
2、是,則“”是“”的( )A充分不必要條件B必要不充分條件C既不充分也不必要條件D充分必要條件3在中,角的對邊分別為,若,且,則的面積為( )ABCD4已知集合A,則集合( )ABCD5如圖是一個幾何體的三視圖,則這個幾何體的體積為( )ABCD6已知正方體的棱長為,分別是棱,的中點,給出下列四個命題: ; 直線與直線所成角為; 過,三點的平面截該正方體所得的截面為六邊形; 三棱錐的體積為.其中,正確命題的個數為( )ABCD7在區間上隨機取一個數,使直線與圓相交的概率為( )ABCD8已知與分別為函數與函數的圖象上一點,則線段的最小值為( )ABCD69若復數()是純虛數,則復數在復平面內對應
3、的點位于( )A第一象限B第二象限C第三象限D第四象限10如圖是計算值的一個程序框圖,其中判斷框內應填入的條件是( )ABCD11已知直線與圓有公共點,則的最大值為( )A4BCD12下圖是我國第2430屆奧運獎牌數的回眸和中國代表團獎牌總數統計圖,根據表和統計圖,以下描述正確的是( )金牌(塊)銀牌(塊)銅牌(塊)獎牌總數2451112282516221254261622125027281615592832171463295121281003038272388A中國代表團的奧運獎牌總數一直保持上升趨勢B折線統計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C第30屆與第29屆
4、北京奧運會相比,奧運金牌數、銀牌數、銅牌數都有所下降D統計圖中前六屆奧運會中國代表團的奧運獎牌總數的中位數是54.5二、填空題:本題共4小題,每小題5分,共20分。13函數在處的切線方程是_.14已知復數,其中為虛數單位,若復數為純虛數,則實數的值是_15已知,復數且(為虛數單位),則_,_16在中,角,的對邊分別為,若,且,則面積的最大值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)我國在2018年社保又出新的好消息,之前流動就業人員跨地區就業后,社保轉移接續的手續往往比較繁瑣,費時費力.社保改革后將簡化手續,深得流動就業人員的贊譽.某市社保局從2018年
5、辦理社保的人員中抽取300人,得到其辦理手續所需時間(天)與人數的頻數分布表:時間人數156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續所需時間與是否流動人員的列聯表,并判斷是否有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.列聯表如下流動人員非流動人員總計辦理社保手續所需時間不超過4天辦理社保手續所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,
6、3人中辦理的時間為的人數為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87918(12分)2019年入冬時節,長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現從速滑項目中隨機選出100名參與者,并由專業的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統計,請將下列列聯表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅
7、長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)19(12分)已知函數.()當時,求不等式的解集;()若存在滿足不等式,求實數的取值范圍.20(12分)在中,角的對邊分別為,若.(1)求角的大小;(2)若,為外一點,求四邊形面積的最大值.21(12分)某調查機構為了了解某產品年產量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產品的年產量和價格統計如下表:x12345y17.016.515.513.812.2(1)求y關于x的線性回歸方程;(2)若每噸該產品
8、的成本為12千元,假設該產品可全部賣出,預測當年產量為多少時,年利潤w取到最大值?參考公式: 22(10分)若數列前n項和為,且滿足(t為常數,且)(1)求數列的通項公式:(2)設,且數列為等比數列,令,.求證:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】先利用三角恒等變換將題中的方程化簡,構造新的函數,將方程的解的問題轉化為函數圖象的交點問題,畫出函數圖象,再結合,解得的取值范圍.【詳解】由題化簡得,作出的圖象,又由易知故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數形結合法,求得范圍.屬于中檔題
9、.2D【解析】由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“” 是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質等基礎知識,考查邏輯推理能力,是基礎題3C【解析】由,可得,化簡利用余弦定理可得,解得即可得出三角形面積【詳解】解:,且,化為:,解得故選:【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題4A【解析】化簡集合,,按交集定義,即可求解.【詳解】集合,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.5A
10、【解析】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1再由球與圓柱體積公式求解【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1則幾何體的體積為故選:【點睛】本題主要考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,意在考查學生對這些知識的理解掌握水平6C【解析】畫出幾何體的圖形,然后轉化判斷四個命題的真假即可【詳解】如圖;連接相關點的線段,為的中點,連接,因為是中點,可知,可知平面,即可證明,所以正確;直線與直線所成角就是直線與直線所成角為;
11、正確;過,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形所以不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,所以三棱錐的體積為,正確;故選:【點睛】本題考查命題的真假的判斷與應用,涉及空間幾何體的體積,直線與平面的位置關系的應用,平面的基本性質,是中檔題7C【解析】根據直線與圓相交,可求出k的取值范圍,根據幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得 所以相交的概率,故選C.【點睛】本題主要考查了直線與圓的位置關系,幾何概型,屬于中檔題.8C【解析】利用導數法和兩直線平行性質,將線段的最小值轉化成切點到直線距離.【詳解】已知與分別為函數與函
12、數的圖象上一點,可知拋物線存在某條切線與直線平行,則,設拋物線的切點為,則由可得,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導數的幾何意義的應用,以及點到直線的距離公式的應用,考查轉化思想和計算能力.9B【解析】化簡復數,由它是純虛數,求得,從而確定對應的點的坐標【詳解】是純虛數,則,對應點為,在第二象限故選:B【點睛】本題考查復數的除法運算,考查復數的概念與幾何意義本題屬于基礎題10B【解析】根據計算結果,可知該循環結構循環了5次;輸出S前循環體的n的值為12,k的值為6,進而可得判斷框內的不等式【詳解】因為該程序圖是計算值的一個程序框圈所以共循環了5次所以
13、輸出S前循環體的n的值為12,k的值為6,即判斷框內的不等式應為或 所以選C【點睛】本題考查了程序框圖的簡單應用,根據結果填寫判斷框,屬于基礎題11C【解析】根據表示圓和直線與圓有公共點,得到,再利用二次函數的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即 ,解得,此時, 因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數的性質,還考查了運算求解的能力,屬于中檔題.12B【解析】根據表格和折線統計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數不是一直保持上升趨勢,29屆最多,錯誤;B.折線統計圖中的六
14、條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數、銅牌數有所下降,銀牌數有所上升,錯誤;D. 統計圖中前六屆奧運會中國代表團的奧運獎牌總數按照順序排列的中位數為,不正確;故選:B【點睛】此題考查統計圖,關鍵點讀懂折線圖,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13【解析】求出和的值,利用點斜式可得出所求切線的方程.【詳解】,則,.因此,函數在處的切線方程是,即.故答案為:.【點睛】本題考查利用導數求函數的切線方程,考查計算能力,屬于基礎題.142【解析】由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由
15、題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.15 【解析】復數且,故答案為,16【解析】利用正弦定理將角化邊得到,再由余弦定理得到,根據同角三角函數的基本關系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:在中,.,即,當且僅當時等號成立,面積的最大值為.故答案為:【點睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應用,以及基本不等式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)列聯表見解析,有;(2)分布列見解析,.【解析】(1)根據題意,結合
16、已知數據即可填寫列聯表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數,再求出的可取值,根據古典概型的概率計算公式求得分布列,結合分布列即可求得數學期望.【詳解】(1)因為樣本數據中有流動人員210人,非流動人員90人,所以辦理社保手續所需時間與是否流動人員列聯表如下:辦理社保手續所需時間與是否流動人員列聯表流動人員非流動人員總計辦理社保手續所需時間不超過4天453075辦理社保手續所需時間超過4天16560225總計21090300結合列聯表可算得.有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.(2)根據分層抽樣可知時間在可選9人,時間在可以選3名,故,則,可
17、知分布列為0123可知.【點睛】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數學期望,涉及分層抽樣,屬綜合性中檔題.18(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系【解析】(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據表格數據填寫列聯表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數為.完善列聯表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,不能在
18、犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【點睛】本小題主要考查根據頻率分布直方圖計算小長方形的高,考查列聯表獨立性檢驗,屬于基礎題.19()或.()【解析】()分類討論解絕對值不等式得到答案.()討論和兩種情況,得到函數單調性,得到只需,代入計算得到答案.【詳解】()當時,不等式為,變形為或或,解集為或. ()當時,由此可知在單調遞減,在單調遞增, 當時,同樣得到在單調遞減,在單調遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學生的計算能力和綜合應用能力.20(1)(2)【解析】(1)根據正弦定理化簡等式可得,即;(2)根據題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得: 在中,則,即,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地下管材安裝施工方案
- 普洱學院《管理學概論》2023-2024學年第二學期期末試卷
- 寧夏大學《朝鮮語會話一》2023-2024學年第二學期期末試卷
- 新疆現代職業技術學院《鋼筆書法訓練》2023-2024學年第二學期期末試卷
- 《2025聘請技術人才合同協議書》
- 高爾夫知識全面解析
- 《花朵的成長》課件
- 延邊職業技術學院《制圖基礎》2023-2024學年第二學期期末試卷
- sbs防水的施工方案
- 2025至2031年中國尾窗飾板行業投資前景及策略咨詢研究報告
- 宅基轉讓協議書模板
- 江西省人才發展集團有限公司招聘考試內容
- 高中主題班會 奮力拼搏圓夢高考課件-高三下學期沖刺高考主題班會
- 2025年上半年績溪縣龍川控股集團限公司公招聘15人易考易錯模擬試題(共500題)試卷后附參考答案
- 2025-2030全球及中國汽車制動卡鉗行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 武漢市部分學校2025屆高三第四次月考(數學試題)試題
- 基于PLC的自動生產線控制系統的設計畢業論文
- 17J008擋土墻(重力式、衡重式、懸臂式)圖示圖集
- 【S鎮35kV變電站一次系統設計(論文)14000字】
- 行政復議法-形考作業4-國開(ZJ)-參考資料
- 高墩(40m高)安全專項施工方案(專家)
評論
0/150
提交評論