小升初奧數(shù)“310”個(gè)必備知識(shí)點(diǎn)總結(jié)_第1頁(yè)
小升初奧數(shù)“310”個(gè)必備知識(shí)點(diǎn)總結(jié)_第2頁(yè)
小升初奧數(shù)“310”個(gè)必備知識(shí)點(diǎn)總結(jié)_第3頁(yè)
小升初奧數(shù)“310”個(gè)必備知識(shí)點(diǎn)總結(jié)_第4頁(yè)
小升初奧數(shù)“310”個(gè)必備知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩53頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 小升初奧數(shù)“310”個(gè)必備知識(shí)點(diǎn)總結(jié) 稱球問(wèn)題m/專題介紹稱球問(wèn)題是一類傳統(tǒng)的趣味數(shù)學(xué)問(wèn)題,它鍛煉著一代又一代人的智力,歷久不衰。下面幾道稱球趣題,請(qǐng)你先仔細(xì)考慮一番,然后再閱讀解答,想來(lái)你一定會(huì)有所收獲。經(jīng)典例題例1 有4堆外表上一樣的球,每堆4個(gè)。已知其中三堆是正品、一堆是次品,正品球每個(gè)重10克,次品球每個(gè)重11克,請(qǐng)你用天平只稱一次,把是次品的那堆找出來(lái)。解 :依次從第一、二、三、四堆球中,各取1、2、3、4個(gè)球,這10個(gè)球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球。例2 有27個(gè)外表上一樣的球,其中只有一個(gè)是次品,重量比正品輕,請(qǐng)你用天平只稱三次(不用砝碼),把次

2、品球找出來(lái)。解 :第一次:把27個(gè)球分為三堆,每堆9個(gè),取其中兩堆分別放在天平的兩個(gè)盤上。若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來(lái)稱的一堆必定較輕,次品必在較輕的一堆中。第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個(gè)球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆。第三次:從第二次找出的較輕的一堆3個(gè)球中取出2個(gè)稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個(gè)未稱的就是次品。例3 把10個(gè)外表上一樣的球,其中只有一個(gè)是次品,請(qǐng)你用天平只稱三次,把次品找出來(lái)。解:把10個(gè)球分成3個(gè)、3個(gè)、3個(gè)、1個(gè)四組,將四組球及其重量分別用A、B、C、D表示。把A、B兩組分

3、別放在天平的兩個(gè)盤上去稱,則(1)若A=B,則A、B中都是正品,再稱B、C。如B=C,顯然D中的那個(gè)球是次品;如BC,則次品在C中且次品比正品輕,再在C中取出2個(gè)球來(lái)稱,便可得出結(jié)論。如BC,仿照BC的情況也可得出結(jié)論。(2)若AB,則C、D中都是正品,再稱B、C,則有B=C,或BC(BC不可能,為什么?)如B=C,則次品在A中且次品比正品重,再在A中取出2個(gè)球來(lái)稱,便可得出結(jié)論;如BC,仿前也可得出結(jié)論。(3)若AB,類似于AB的情況,可分析得出結(jié)論。練習(xí)有12個(gè)外表上一樣的球,其中只有一個(gè)是次品,用天平只稱三次,你能找出次品嗎?循環(huán)小數(shù)循環(huán)小數(shù)一、把循環(huán)小數(shù)的小數(shù)部分化成分?jǐn)?shù)的規(guī)則純循環(huán)小

4、數(shù)小數(shù)部分化成分?jǐn)?shù):將一個(gè)循環(huán)節(jié)的數(shù)字組成的數(shù)作為分子,分母的各位都是9,9的個(gè)數(shù)與循環(huán)節(jié)的位數(shù)相同,最后能約分的再約分。混循環(huán)小數(shù)小數(shù)部分化成分?jǐn)?shù):分子是第二個(gè)循環(huán)節(jié)以前的小數(shù)部分的數(shù)字組成的數(shù)與不循環(huán)部分的數(shù)字所組成的數(shù)之差,分母的頭幾位數(shù)字是9,9的個(gè)數(shù)與一個(gè)循環(huán)節(jié)的位數(shù)相同,末幾位是0,0的個(gè)數(shù)與不循環(huán)部分的位數(shù)相同。二、分?jǐn)?shù)轉(zhuǎn)化成循環(huán)小數(shù)的判斷方法:(一個(gè)最簡(jiǎn)分?jǐn)?shù),如果分母中既含有質(zhì)因數(shù)2和5,又含有2和5以外的質(zhì)因數(shù),那么這個(gè)分?jǐn)?shù)化成的小數(shù)必定是混循環(huán)小數(shù)。一個(gè)最簡(jiǎn)分?jǐn)?shù),如果分母中只含有2和5以外的質(zhì)因數(shù),那么這個(gè)分?jǐn)?shù)化成的小數(shù)必定是純循環(huán)小數(shù)。六年奧數(shù)知識(shí)講解:簡(jiǎn)單方程簡(jiǎn)單方程代

5、數(shù)式:用運(yùn)算符號(hào)(加減乘除)連接起來(lái)的字母或者數(shù)字。方程:含有未知數(shù)的等式叫方程。列方程:把兩個(gè)或幾個(gè)相等的代數(shù)式用等號(hào)連起來(lái)。列方程關(guān)鍵問(wèn)題:用兩個(gè)以上的不同代數(shù)式表示同一個(gè)數(shù)。等式性質(zhì):等式兩邊同時(shí)加上或減去一個(gè)數(shù),等式不變;等式兩邊同時(shí)乘以或除以一個(gè)數(shù)(除0),等式不變。移項(xiàng):把數(shù)或式子改變符號(hào)后從方程等號(hào)的一邊移到另一邊;移項(xiàng)規(guī)則:先移加減,后變乘除;先去大括號(hào),再去中括號(hào),最后去小括號(hào)。加去括號(hào)規(guī)則:在只有加減運(yùn)算的算式里,如果括號(hào)前面是“+”號(hào),則添、去括號(hào),括號(hào)里面的運(yùn)算符號(hào)都不變;如果括號(hào)前面是“”號(hào),添、去括號(hào),括號(hào)里面的運(yùn)算符號(hào)都要改變;括號(hào)里面的數(shù)前沒(méi)有“+”或“”的,都

6、按有“+”處理。移項(xiàng)關(guān)鍵問(wèn)題:運(yùn)用等式的性質(zhì),移項(xiàng)規(guī)則,加、去括號(hào)規(guī)則。乘法分配率:a(b+c)=ab+ac解方程步驟:去分母;去括號(hào);移項(xiàng);合并同類項(xiàng);求解;方程組:幾個(gè)二元一次方程組成的一組方程。解方程組的步驟:消元;按一元一次方程步驟。消元的方法:加減消元;代入消元。六年奧數(shù)知識(shí)講解:濃度與配比濃度與配比經(jīng)驗(yàn)總結(jié):在配比的過(guò)程中存在這樣的一個(gè)反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。溶質(zhì):溶解在其它物質(zhì)里的物質(zhì)(例如糖、鹽、酒精等)叫溶質(zhì)。溶劑:溶解其它物質(zhì)的物質(zhì)(例如水、汽油等)叫溶劑。溶液:溶質(zhì)和溶劑混合成的液體(例如鹽水、糖水等)叫溶液。基本公式:溶液重量=溶質(zhì)重

7、量+溶劑重量;溶質(zhì)重量=溶液重量×濃度;濃度= ×100%= ×100%理論部分小練習(xí):試推出溶質(zhì)、溶液、溶劑三者的其它公式。經(jīng)驗(yàn)總結(jié):在配比的過(guò)程中存在這樣的一個(gè)反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。六年奧數(shù)知識(shí)講解:時(shí)鐘問(wèn)題快慢表問(wèn)題時(shí)鐘問(wèn)題快慢表問(wèn)題基本思路:1、按照行程問(wèn)題中的思維方法解題;2、不同的表當(dāng)成速度不同的運(yùn)動(dòng)物體;3、路程的單位是分格(表一周為60分格);4、時(shí)間是標(biāo)準(zhǔn)表所經(jīng)過(guò)的時(shí)間;5、合理利用行程問(wèn)題中的比例關(guān)系;六年奧數(shù)知識(shí)講解:邏輯推理問(wèn)題邏輯推理基本方法簡(jiǎn)介:條件分析假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個(gè)

8、假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說(shuō)明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過(guò)程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。條件分析列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時(shí),就需要進(jìn)行列表來(lái)輔助分析。列表法就是把題設(shè)的條件全部表示在一個(gè)長(zhǎng)方形表格中,表格的行、列分別表示不同的對(duì)象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。條件分析圖表法:當(dāng)兩個(gè)對(duì)象之間只有兩種關(guān)系時(shí),就可用連線表示兩個(gè)對(duì)象之間的關(guān)系,有連線則表示“是,有”等肯定的狀態(tài),沒(méi)有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識(shí)或不認(rèn)識(shí)兩種狀態(tài),有連線表示認(rèn)識(shí),沒(méi)有表示不認(rèn)識(shí)。邏輯計(jì)算

9、:在推理的過(guò)程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計(jì)算,根據(jù)計(jì)算的結(jié)果為推理提供一個(gè)新的判斷篩選條件。簡(jiǎn)單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問(wèn)題的解決。年奧數(shù)知識(shí)講解:綜合行程問(wèn)題綜合行程基本概念:行程問(wèn)題是研究物體運(yùn)動(dòng)的,它研究的是物體速度、時(shí)間、路程三者之間的關(guān)系.基本公式:路程=速度×時(shí)間;路程÷時(shí)間=速度;路程÷速度=時(shí)間關(guān)鍵問(wèn)題:確定運(yùn)動(dòng)過(guò)程中的位置和方向。相遇問(wèn)題:速度和×相遇時(shí)間=相遇路程(請(qǐng)寫出其他公式)追及問(wèn)題:追及時(shí)間路程差÷速

10、度差(寫出其他公式)流水問(wèn)題:順?biāo)谐?(船速+水速)×順?biāo)畷r(shí)間逆水行程=(船速-水速)×逆水時(shí)間順?biāo)俣?船速+水速逆水速度=船速-水速靜水速度=(順?biāo)俣?逆水速度)÷2水    速=(順?biāo)俣?逆水速度)÷2流水問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。過(guò)橋問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。主要方法:畫線段圖法基本題型:已知路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。六年奧數(shù)知識(shí)講解:完全平方數(shù)完全平方數(shù)完全平方數(shù)特征:1. 末位數(shù)字只能是

11、:0、1、4、5、6、9;反之不成立。2. 除以3余0或余1;反之不成立。3. 除以4余0或余1;反之不成立。4. 約數(shù)個(gè)數(shù)為奇數(shù);反之成立。5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。6. 奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。7. 兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y2六年奧數(shù)知識(shí)講解:分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用基本概念與性質(zhì):分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相

12、同的數(shù)(0除外),分?jǐn)?shù)的大小不變。分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。常用方法:逆向思維方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。對(duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。轉(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。量不變思

13、維方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。濃度配比法:一般應(yīng)用于總量和分量都發(fā)生變化的狀況。六年奧數(shù)知識(shí)講解:余數(shù)及其應(yīng)用余數(shù)及其應(yīng)用基本概念:對(duì)任意自然數(shù)a、b、q、r,如果使得a÷b=qr,且0<r<b,那么r叫做a除以b的余數(shù),q叫做a除以b的不完全商。余數(shù)的

14、性質(zhì):余數(shù)小于除數(shù)。若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。六年奧數(shù)知識(shí)講解:約數(shù)與倍數(shù)約數(shù)與倍數(shù)約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。公約數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。最大公約數(shù)的性質(zhì):1、幾個(gè)數(shù)都除以它們的最大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。2、幾個(gè)數(shù)的最大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。3、幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的最大公約數(shù)的約數(shù)。4、幾個(gè)數(shù)都乘

15、以一個(gè)自然數(shù)m,所得的積的最大公約數(shù)等于這幾個(gè)數(shù)的最大公約數(shù)乘以m。例如:12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有:1、2、3、6、9、18;那么12和18的公約數(shù)有:1、2、3、6;那么12和18最大的公約數(shù)是:6,記作(12,18)=6;求最大公約數(shù)基本方法:1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來(lái)。2、短除法:先找公有的約數(shù),然后相乘。3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的最大公約數(shù)。公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。12的倍數(shù)有:12、24、36、48;18的倍數(shù)有:18

16、、36、54、72;那么12和18的公倍數(shù)有:36、72、108;那么12和18最小的公倍數(shù)是36,記作12,18=36;最小公倍數(shù)的性質(zhì):1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。2、兩個(gè)數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。求最小公倍數(shù)基本方法:    1、短除法求最小公倍數(shù);    2、分解質(zhì)因數(shù)的方法六年奧數(shù)知識(shí)講解:加法原理加法乘法原理和幾何計(jì)數(shù)加法原理:如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+

17、m2. +mn種不同的方法。關(guān)鍵問(wèn)題:確定工作的分類方法。基本特征:每一種方法都可完成任務(wù)。乘法原理:如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2. ×mn種不同的方法。關(guān)鍵問(wèn)題:確定工作的完成步驟。基本特征:每一步只能完成任務(wù)的一部分。直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。直線特點(diǎn):沒(méi)有端點(diǎn),沒(méi)有長(zhǎng)度。線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。線段特點(diǎn):有兩個(gè)端點(diǎn),有長(zhǎng)度。射線:把直線的一端無(wú)限延長(zhǎng)。射線特點(diǎn)

18、:只有一個(gè)端點(diǎn);沒(méi)有長(zhǎng)度。數(shù)線段規(guī)律:總數(shù)1+2+3+(點(diǎn)數(shù)一1);數(shù)角規(guī)律=1+2+3+(射線數(shù)一1);數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)×寬的線段數(shù):數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+行數(shù)×列數(shù)六年奧數(shù)知識(shí)講解:數(shù)列求和數(shù)列求和等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。基本概念:首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn

19、表示基本思路:等差數(shù)列中涉及五個(gè)量:a1 ,an, d, n, sn,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。基本公式:通項(xiàng)公式:an = a1+(n1)d;通項(xiàng)首項(xiàng)(項(xiàng)數(shù)一1) ×公差;數(shù)列和公式:sn,= (a1+ an)×n÷2;數(shù)列和(首項(xiàng)末項(xiàng))×項(xiàng)數(shù)÷2;項(xiàng)數(shù)公式:n= (an+ a1)÷d1;項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差1;公差公式:d =(ana1)÷(n1);公差=(末項(xiàng)首項(xiàng))÷(項(xiàng)數(shù)1);關(guān)鍵問(wèn)題:確定已知量和未知量

20、,確定使用的公式;六年奧數(shù)知識(shí)講解:抽屜原理抽屜原理抽屜原則一:如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況:4=4+0+0   4=3+1+0   4=2+2+0   4=2+1+1觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說(shuō)必有一個(gè)抽屜中至少放有2個(gè)物體。抽屜原則二:如果把n個(gè)物體放在m個(gè)抽屜里,其中n>m,那么必有一個(gè)抽屜至少有:k=n/m +1個(gè)物體:當(dāng)n不能

21、被m整除時(shí)。k=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。理解知識(shí)點(diǎn):X表示不超過(guò)X的最大整數(shù)。例4.351=4;0.321=0;2.9999=2;關(guān)鍵問(wèn)題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。六年奧數(shù)知識(shí)講解:平均數(shù)問(wèn)題平均數(shù)基本公式:平均數(shù)=總數(shù)量÷總份數(shù)總數(shù)量=平均數(shù)×總份數(shù)總份數(shù)=總數(shù)量÷平均數(shù)平均數(shù)=基準(zhǔn)數(shù)每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)基本算法:求出總數(shù)量以及總份數(shù),利用基本公式進(jìn)行計(jì)算.基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)

22、的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式六年奧數(shù)知識(shí)講解:盈虧問(wèn)題盈虧問(wèn)題基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭炕舅悸罚合葘煞N分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量基本題型:一次有余數(shù),另一次不足;基本公式:總份數(shù)(余數(shù)不足數(shù))÷兩次每份數(shù)的差當(dāng)兩次都有余數(shù);基本公式:總份數(shù)(較大余數(shù)一較小余數(shù))

23、7;兩次每份數(shù)的差當(dāng)兩次都不足;基本公式:總份數(shù)(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。關(guān)鍵問(wèn)題:確定對(duì)象總量和總的組數(shù)。六年奧數(shù)知識(shí)講解:植樹問(wèn)題總結(jié)植樹問(wèn)題基本類型:在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲線上植樹,兩端都不植樹在直線或者不封閉的曲線上植樹,只有一端植樹封閉曲線上植樹基本公式:棵數(shù)=段數(shù)1棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)1棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)棵距×段數(shù)=總長(zhǎng)關(guān)鍵問(wèn)題:確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系六年奧數(shù)知識(shí)講解:年齡問(wèn)題的三大特征年齡問(wèn)題:已知兩人的年齡,求若干年前

24、或若干年后兩人年齡之間倍數(shù)關(guān)系的應(yīng)用題,叫做年齡問(wèn)題。年齡問(wèn)題的三個(gè)基本特征:兩個(gè)人的年齡差是不變的;兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;解題規(guī)律:抓住年齡差是個(gè)不變的數(shù)(常數(shù)),而倍數(shù)卻是每年都在變化的這個(gè)關(guān)鍵。例:父親今年54歲,兒子今年18歲,幾年前父親的年齡是兒子年齡的7倍? 父子年齡的差是多少?54 18 = 36(歲) 幾年前父親年齡比兒子年齡大幾倍?7 - 1 = 6 幾年前兒子多少歲?36÷6 = 6(歲) 幾年前父親年齡是兒子年齡的7倍?18 6 = 12 (年)答:12年前父親的年齡是兒子年齡的7倍。六年級(jí)奧數(shù)專題講解:利潤(rùn)與折扣

25、專題介紹工廠和商店有時(shí)減價(jià)出售商品,通常我們把它稱為“打折扣”出售,幾折就是百分之幾十。利潤(rùn)問(wèn)題也是一種常見的百分?jǐn)?shù)應(yīng)用題,商店出售商品總是期望獲得利潤(rùn),一般情況下,商品從廠家購(gòu)進(jìn)的價(jià)格稱為本價(jià),商家在成本價(jià)的基礎(chǔ)上提高價(jià)格出售,所賺的錢稱為利潤(rùn),利潤(rùn)與成本的百分比稱之為利潤(rùn)率。期望利潤(rùn)=成本價(jià)×期望利潤(rùn)率。經(jīng)典例題例1、某商店將某種DVD按進(jìn)價(jià)提高35%后,打出“九折優(yōu)惠酬賓,外送50元出租車費(fèi)”的廣告,結(jié)果每臺(tái)仍舊獲利208元,那么每臺(tái)DVD的進(jìn)價(jià)是多少元?(B級(jí))解:定價(jià)是進(jìn)價(jià)的1+35%打九折后,實(shí)際售價(jià)是進(jìn)價(jià)的135%×90%=121.5%每臺(tái)DVD的實(shí)際盈利:2

26、08+50=258(元)每臺(tái)DVD的進(jìn)價(jià)258÷(121.5%-1)=1200(元)答:每臺(tái)DVD的進(jìn)價(jià)是1200元例2:一種服裝,甲店比乙店的進(jìn)貨便宜10%甲店按照20%的利潤(rùn)定價(jià),乙店按照15%的利潤(rùn)定價(jià),甲店比乙店的出廠價(jià)便宜11.2元,問(wèn)甲店的進(jìn)貨價(jià) 是多少元?(B級(jí))分析:解:設(shè)乙店的成本價(jià)為1(1+15%)是乙店的定價(jià)(1-10%)×(1+20%)是甲店的定價(jià)(1+15%)-(1-10%)×(1+20%)=7%11.2÷7%=160(元)160×(1-10%)=144(元)答:甲店的進(jìn)貨價(jià)為144元。例3、原來(lái)將一批水果按100%的

27、利潤(rùn)定價(jià)出售,由于價(jià)格過(guò)高,無(wú)人購(gòu)買,不得不按38%的利潤(rùn)重新定價(jià),這樣出售了其中的40%,此時(shí)因害怕剩余水果會(huì)變質(zhì),不得不再次降價(jià),售出了全部水果。結(jié)果實(shí)際獲得的總利潤(rùn)是原來(lái)利潤(rùn)的30.2%,那么第二次降價(jià)后的價(jià)格是原來(lái)定價(jià)的百分之幾?(B級(jí))分析:要求第二次降價(jià)后的價(jià)格是原來(lái)定價(jià)的百分之幾,則需要求出第二次是按百分之幾的利潤(rùn)定價(jià)。解:設(shè)第二次降價(jià)是按x%的利潤(rùn)定價(jià)的。38%×40%x%×(1-40%)=30.2%X%=25%(1+25%)÷(1+100%)=62.5%答:第二次降價(jià)后的價(jià)格是原來(lái)價(jià)格的62.5%練習(xí):1、某商品按每個(gè)7元的利潤(rùn)賣出13個(gè)的錢,與

28、按每個(gè)11元的利潤(rùn)賣出12個(gè)的錢一樣多。這種商品的進(jìn)貨價(jià)是每個(gè)多少元?2、租用倉(cāng)庫(kù)堆放3噸貨物,每月租金7000元。這些貨物原計(jì)劃要銷售3個(gè)月,由于降低了價(jià)格,結(jié)果2個(gè)月就銷售完了,由于節(jié)省了租倉(cāng)庫(kù)的租金,所以結(jié)算下來(lái),反而比原計(jì)劃多賺了1000元。問(wèn):每千克貨物的價(jià)格降低了多少元?3、張先生向商店訂購(gòu)了每件定價(jià)100元的某種商品80件。張先生對(duì)商店經(jīng)理說(shuō):“如果你肯減價(jià),那么每減價(jià)1元,我就多訂購(gòu)4件。”商店經(jīng)理算了一下,若減價(jià)5,則由于張先生多訂購(gòu),獲得的利潤(rùn)反而比原來(lái)多100元。問(wèn):這種商品的成本是多少元?4、某商店到蘋果產(chǎn)地去收購(gòu)蘋果,收購(gòu)價(jià)為每千克1.20元。從產(chǎn)地到商店的距離是40

29、0千米,運(yùn)費(fèi)為每噸貨物每運(yùn)1千米收1.50元。如果在運(yùn)輸及銷售過(guò)程中的損耗是10,商店要想實(shí)現(xiàn)25的利潤(rùn)率,零售價(jià)應(yīng)是每千克多少元?5、小明到商店買了相同數(shù)量的紅球和白球,紅球原價(jià)2元3個(gè),白球原價(jià)3元5個(gè)。新年優(yōu)惠,兩種球都按1元2個(gè)賣,結(jié)果小明少花了8元錢。問(wèn):小明共買了多少個(gè)球?6、某廠向銀行申請(qǐng)甲、乙兩種貸款共40萬(wàn)元,每年需付利息5萬(wàn)元。甲種貸款年利率為12,乙種貸款年利率為14。該廠申請(qǐng)甲、乙兩種貸款的金額各是多少?7、商店進(jìn)了一批鋼筆,用零售價(jià)10元賣出20支與用零售價(jià)11元賣出15支的利潤(rùn)相同。這批鋼筆的進(jìn)貨價(jià)每支多少元?8、某種蜜瓜大量上市,這幾天的價(jià)格每天都是前一天的80。

30、媽媽第一天買了2個(gè),第二天買了3個(gè),第三天買了5個(gè),共花了38元。若這10個(gè)蜜瓜都在第三天買,則能少花多少錢?9、商店以每雙13元購(gòu)進(jìn)一批涼鞋,售價(jià)為14.8元,賣到還剩5雙時(shí),除去購(gòu)進(jìn)這批涼鞋的全部開銷外還獲利88元。問(wèn):這批涼鞋共多少雙?10、體育用品商店用3000元購(gòu)進(jìn)50個(gè)足球和40個(gè)籃球。零售時(shí)足球加價(jià)9,籃球加價(jià)11,全部賣出后獲利潤(rùn)298元。問(wèn):每個(gè)足球和籃球的進(jìn)價(jià)是多少元?六年奧數(shù)知識(shí)講解:不定方程不定方程一次不定方程:含有兩個(gè)未知數(shù)的一個(gè)方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常規(guī)方法:觀察法、試驗(yàn)法、枚舉法;多元不定方程:含有三個(gè)未知數(shù)的方程叫

31、三元一次方程,它的解也不唯一;多元不定方程解法:根據(jù)已知條件確定一個(gè)未知數(shù)的值,或者消去一個(gè)未知數(shù),這樣就把三元一次方程變成二元一次不定方程,按照二元一次不定方程解即可;涉及知識(shí)點(diǎn):列方程、數(shù)的整除、大小比較;解不定方程的步驟:1、列方程;2、消元;3、寫出表達(dá)式;4、確定范圍;5、確定特征;6、確定答案;技巧總結(jié):A、寫出表達(dá)式的技巧:用特征不明顯的未知數(shù)表示特征明顯的未知數(shù),同時(shí)考慮用范圍小的未知數(shù)表示范圍大的未知數(shù);B、消元技巧:消掉范圍大的未知數(shù);六年奧數(shù)知識(shí)講解:經(jīng)濟(jì)問(wèn)題經(jīng)濟(jì)問(wèn)題利潤(rùn)的百分?jǐn)?shù)=(賣價(jià)-成本)÷成本×100%;賣價(jià)=成本×(1+利潤(rùn)的百分?jǐn)?shù)

32、);成本=賣價(jià)÷(1+利潤(rùn)的百分?jǐn)?shù));商品的定價(jià)按照期望的利潤(rùn)來(lái)確定;定價(jià)=成本×(1+期望利潤(rùn)的百分?jǐn)?shù));本金:儲(chǔ)蓄的金額;利率:利息和本金的比;利息=本金×利率×期數(shù);含稅價(jià)格=不含稅價(jià)格×(1+增值稅稅率);六年奧數(shù)知識(shí)講解:時(shí)鐘問(wèn)題鐘面追及時(shí)鐘問(wèn)題鐘面追及基本思路:封閉曲線上的追及問(wèn)題。關(guān)鍵問(wèn)題:    確定分針與時(shí)針的初始位置;確定分針與時(shí)針的路程差;基本方法:分格方法:時(shí)鐘的鐘面圓周被均勻分成60小格,每小格我們稱為1分格。分針每小時(shí)走60分格,即一周;而時(shí)針只走5分格,故分針每分鐘走1分格,時(shí)針每分鐘

33、走 112分格。度數(shù)方法:從角度觀點(diǎn)看,鐘面圓周一周是360°,分針每分鐘轉(zhuǎn)360/60 度,即6°,時(shí)針每分鐘轉(zhuǎn)360/12*60 度,即1/2 度。六年奧數(shù)知識(shí)講解:幾何面積幾何面積基本思路:在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì)算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。常用方法:1. 連輔助線方法2. 利用等底等高的兩個(gè)三角形面積相等。3. 大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說(shuō)的是任意點(diǎn),解題時(shí)可把任意點(diǎn)設(shè)置在特殊位置上)。4. 利用特殊規(guī)律等腰直角三角形,已知任意一條邊

34、都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)梯形對(duì)角線連線后,兩腰部分面積相等。圓的面積占外接正方形面積的78.5%。六年奧數(shù)知識(shí)講解:工程問(wèn)題工程問(wèn)題基本公式:工作總量=工作效率×工作時(shí)間工作效率=工作總量÷工作時(shí)間工作時(shí)間=工作總量÷工作效率基本思路:假設(shè)工作總量為“1”(和總工作量無(wú)關(guān));假設(shè)一個(gè)方便的數(shù)為工作總量(一般是它們完成工作總量所用時(shí)間的最小公倍數(shù)),利用上述三個(gè)基本關(guān)系,可以簡(jiǎn)單地表示出工作效率及工作時(shí)間.關(guān)鍵問(wèn)題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。經(jīng)驗(yàn)簡(jiǎn)評(píng):合久必分,分久必合。六年奧數(shù)知識(shí)講解:比和比例比和比例比:兩

35、個(gè)數(shù)相除又叫兩個(gè)數(shù)的比。比號(hào)前面的數(shù)叫比的前項(xiàng),比號(hào)后面的數(shù)叫比的后項(xiàng)。比值:比的前項(xiàng)除以后項(xiàng)的商,叫做比值。比的性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(零除外),比值不變。比例:表示兩個(gè)比相等的式子叫做比例。a:b=c:d或比例的性質(zhì):兩個(gè)外項(xiàng)積等于兩個(gè)內(nèi)項(xiàng)積(交叉相乘),ad=bc。正比例:若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時(shí)),則A與B成正比。反比例:若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時(shí)),則A與B成反比。比例尺:圖上距離與實(shí)際距離的比叫做比例尺。按比例分配:把幾個(gè)數(shù)按一定比例分成幾份,叫按比例分配。六年奧數(shù)知識(shí)講解:分?jǐn)?shù)大小的比較分?jǐn)?shù)大小的比較基

36、本方法:通分分子法:使所有分?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。通分分母法:使所有分?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。基準(zhǔn)數(shù)法:確定一個(gè)標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。分子和分母大小比較法:當(dāng)分子和分母的差一定時(shí),分子或分母越大的分?jǐn)?shù)值越大。倍率比較法:當(dāng)比較兩個(gè)分子或分母同時(shí)變化時(shí)分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見同倍率變化規(guī)律)轉(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。倍數(shù)比較法:用一個(gè)數(shù)除以另一個(gè)數(shù),結(jié)果得數(shù)和1進(jìn)行比較。大小比較法:用一個(gè)分?jǐn)?shù)減去另一個(gè)分?jǐn)?shù),得出的數(shù)和0比較。倒數(shù)比較法:

37、利用倒數(shù)比較大小,然后確定原數(shù)的大小。基準(zhǔn)數(shù)比較法:確定一個(gè)基準(zhǔn)數(shù),每一個(gè)數(shù)與基準(zhǔn)數(shù)比較。六年奧數(shù)知識(shí)講解:余數(shù)問(wèn)題余數(shù)、同余與周期一、同余的定義:若兩個(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對(duì)于模m同余。已知三個(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對(duì)于模m同余,記作ab(mod  m),讀作a同余于b模m。二、同余的性質(zhì):自身性:aa(mod  m);對(duì)稱性:若ab(mod  m),則ba(mod  m);傳遞性:若ab(mod  m),bc(mod  m),則a c(mod  m);和差性:若ab(mod m),c

38、d(mod m),則a+cb+d(mod m),a-cb-d(mod m);相乘性:若a b(mod  m),cd(mod  m),則a×c b×d(mod  m);乘方性:若ab(mod  m),則anbn(mod  m);同倍性:若a b(mod m),整數(shù)c,則a×c b×c(mod  m×c);三、關(guān)于乘方的預(yù)備知識(shí):若A=a×b,則MA=Ma×b=(Ma)b若B=c+d則MB=Mc+d=Mc×Md四、被3、9、11除后的余數(shù)特征:一個(gè)自然數(shù)M,n

39、表示M的各個(gè)數(shù)位上數(shù)字的和,則Mn(mod 9)或(mod 3);一個(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,Y表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則MY-X或M11-(X-Y)(mod 11);五、費(fèi)爾馬小定理:    如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-11(mod p)。六年奧數(shù)知識(shí)講解:數(shù)的整除一、基本概念和符號(hào):1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒(méi)有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。2、常用符號(hào):整除符號(hào)“|”,不能整除符號(hào)“ ”;因?yàn)榉?hào)“”,所以的符號(hào)“”;二、整除判斷方法:1.

40、 能被2、5整除:末位上的數(shù)字能被2、5整除。2. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。 3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。4. 能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。5. 能被7整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。6. 能被11整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。7. 能被13整除:末三位上數(shù)字所組成

41、的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。三、整除的性質(zhì):1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。2. 如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。六年奧數(shù)知識(shí)講解:質(zhì)數(shù)與合數(shù)質(zhì)數(shù)與合數(shù)質(zhì)數(shù):一個(gè)數(shù)除了1和它本身之外,沒(méi)有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。合數(shù):一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做

42、這個(gè)數(shù)的質(zhì)因數(shù)。分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來(lái),叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N= ,其中a1、a2、a3an都是合數(shù)N的質(zhì)因數(shù),且a1<a2<a3<<an。求約數(shù)個(gè)數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)××(rn+1)互質(zhì)數(shù):如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。六年奧數(shù)知識(shí)講解:二進(jìn)制及其應(yīng)用二進(jìn)制及其應(yīng)用十進(jìn)制:用09十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以 234=200+30+4=2×102+3×10+4。=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+A3×102+A2×101+A1×100注意:N0=;N=N(其中N是任意自然數(shù))二進(jìn)制:用01兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論