論電力電壓穩定性機理性_第1頁
論電力電壓穩定性機理性_第2頁
論電力電壓穩定性機理性_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、論電力電壓穩定性機理性摘要:本文針對電壓穩定性破壞進行了詳細的分析。同時,探討了電壓穩定性的分類以及電壓穩定性的機理分析。 關鍵詞:電力系統 穩定性 小擾動電壓 大擾動電壓 隨著電力事業發展迅速,電網內部也存在著引起電壓崩潰的因素,而且可能更為突出,只是由于目前大多數有載調壓器分接頭未投入自動和電力部門過早地采用了甩負荷這一最后的措施,因而電壓穩定問題似乎顯得不那么突出。隨著電力市場化,人們對電能質量要求提高,甩負荷這一措施的使用將會受到限制。研究認為,電壓崩潰日趨嚴重的主要原因有以下幾點:一是由于經濟上及其它方面(如環保)的考慮,發、輸電設備使用的強度日益接近其極限值;二是并聯電容無功補償大

2、量增加,因而當電壓下降時,向電網提供的無功功率按電壓平方下降;三是線路或設備的投切,引起電壓失穩的可能性往往比功角穩定研究中所考慮的三相短路情況要大得多,然而人們長期以來只注意功角穩定的研究。 一、電壓穩定性破壞的原因 電壓崩潰的起因。電力系統穩定問題的物理本質是系統中功率平衡問題,電力系統運行的前提是必須存在一個平衡點。電力系統的穩定問題,直觀的講也就是負荷母線上的節點功率平衡問題。當節點提供的無功功率與負荷消耗的無功功率之間能夠達成此種平衡,且平衡點具有抑制擾動而維持負荷母線電壓的能力,電力系統即是電壓穩定的,反之倘若系統無法維持這種平衡,就會引起系統電壓的不斷下降,并最終導致電壓崩潰。當

3、有擾動發生的時候,會造成節點功率的不平衡,任何一個節點的功率不平衡將導致節點電壓的相位和幅值發生改變。各節點電壓和相位運動的結果若是能穩定在一個系統可以接受的新的狀態,則系統是穩定的,若節點的電壓和相角在擾動過后無法控制的發生不斷的改變,則系統進入失穩狀態。電力系統的電壓穩定和系統的無功功率平衡有關,電壓崩潰的根本原因是由于無功缺額造成的,擾動發生后,系統電壓無法控制的持續下降,電力系統進入電壓失穩狀態。無論是來自動態元件的擾動還是來自網絡部分的擾動,所破壞的平衡均歸結為動態元件的物理平衡。電力系統的動力學行為僅受其動態元件的動力學行為及其相互關系的制約。 二、電壓穩定性的分類 將電壓穩定性問

4、題適當分類,對電壓穩定性的分析,造成不穩定基本因素的識別,以及提出改善穩定運行的方法等都是有利的。 1.按擾動的規模來講電壓穩定問題可以分為小擾動電壓穩定性,大擾動電壓穩定性。一是小擾動電壓穩定性是在如系統負荷逐漸增長,送到負荷節點的功率的微小變化之下系統控制電壓的能力。小擾動下系統能夠穩定運行意味著系統本身能夠不斷調整以適應變化的情況,系統控制系統有能力在小擾動后令人滿意地運行,保證系統發出的無功等于消耗的無功,在出現最大負荷時能成功地供電。這種形式的穩定性由負荷特性、連續作用的控制及給定瞬間的離散控制作用所確定。系統對小擾動的響應特性取決于初始運行條件、輸電系統強度以及所用的發電機的勵磁控

5、制等因素。依靠負荷和電源自身固有的調節能力,使擾動前后的電壓值相同或者相近。二是大擾動電壓穩定性是關于在發生諸如系統故障后,系統控制電壓的能力。這些擾動包括輸電線上短路、失去一臺大發電機或負荷,或者失去兩個子系統間的輸電線。系統對大擾動的響應涉及大量的設備。此外,用來保護單個元件的裝置對系統變量變化的響應也影響系統的特性。2.按照失穩事故的時間場景電壓穩定問題可以分為:一是暫態電壓穩定性,穩定破壞的時間框架從0大約10秒,這也是暫態功角穩定性的時間框架。在這類電壓不穩定中,電壓失穩和功角失穩之間的區別并不總是清晰的,也許兩種現象同時存在。這類電壓崩潰是由諸如感應電動機,和直流換流設備等不良的快

6、速反應負荷元件造成的。對于嚴重的電壓下降感應電動機可能失速,吸收無功功率急劇增加,進而將引起其臨近的其它感應電動機失速。除非盡快切除該類負荷,否則會導致電壓崩潰。二是中期電壓穩定性,穩定破壞的時間框架通常為30秒到50秒,典型者為2到3分。發生此類電壓失穩事故時電力系統一般處于高負荷水平,且從遠方電源送入大量功率,當重載條件下運行的系統受到突然的大擾動后,由于電壓敏感性負荷的作用,系統能夠暫時保持穩定。但擾動后網絡無功損耗大量增加,引起負荷區域電壓下降,當自動調節分接頭的變壓器和配電電壓調節器動作,而恢復末端變壓器負荷側電壓,從而恢復負荷功率時,網絡傳輸電流進一步增大加劇輸電網絡中電壓的下降。

7、同時送端發電機可能因過勵磁限制而只發送有功,甚至由于發電機長時間過電流而被切除。這樣含電源在內的輸電網絡已經不可能提供足夠的無功功率,以支持負荷消耗與網絡無功損耗的需要,就會最終導致電壓崩潰對于這類電壓崩潰事故,運行人員來不及干預,自動調節分接頭的變壓器及配電電壓調節器,發電機過勵限制等因素在此過程中起重要作用。應當指出的是,在這一過程中自動調節分接頭的變壓器的作用是抑制或加劇電壓崩潰的進程,與負荷特性分接頭位置及系統無功儲備有關。三是長期電壓不穩定性,這種場景的電壓崩潰發展過程經歷一個相當長的時間,其過程可大致描述如下:負荷過速增長,導致主要負荷母線電壓單調下降。幾分鐘內由于自動調節分接頭的

8、變壓器及調度干預等作用,電壓的下降得到遏止后,一方面自動調節分接頭的變壓器使網上負荷得到恢復,另一方面負荷繼續快速增加,電源的增加或當地無功補償增加,跟不上負荷增長速度的需要,電壓下降進一步惡化,最終導致部分地區電壓崩潰,系統瓦解,造成大面積停電。在長期電壓不穩定事故中,往往沒有直接的擾動。其原因是本來已經薄弱的嚴重過載的結構,不合理的網絡中的負荷恢復和快速增長造成的。 三、小擾動電壓穩定性的機理分析 電力系統在給定的穩態運行點遭受任意小的擾動后,如果負荷節點的電壓與擾動前的電壓值相同或者相近,則稱系統在給定運行點為小干擾電壓穩定,此時系統擾動后的狀態位于系統擾動后的吸引域內。從負荷節點可將系

9、統分為兩部分,一部分可以看為電源系統,則另一部分看為負荷。小擾動電壓穩定性的前提是擾動后的系統電源的無功電壓靜態特性和負荷的無功電壓靜態特性必須有交點,并且在該點具有維持電壓不變或有微小變化的能力。 四、大擾動電壓穩定性的機理分析 小擾動電壓穩定性是系統在受到擾動后是否存在平衡點的問題,對于大擾動電壓穩定性而言,擾動后的系統存在平衡點是其必要條件,但不是充分條件,系統是否能夠恢復到平衡點,還依賴于系統中各元件無功功率的變化速度。當電源自動調節的速率愈快時,對大干擾的穩定性愈有利。在穩定性的評價中所關心的問題是電力系統遭受暫態擾動后的行為。電力系統在給定的穩態運行點遭受一定的擾動后,如果故障后平衡點超出系統運行限制范圍,系統沒有能力保持在一個靜態穩定的運行點,也就是擾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論