




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、平面向量基本定理和坐標表示【知識清單】1 兩個向量的夾角(1)已知兩個_向量,在平面內任取一點,作,則叫做向量與的夾角(2)向量夾角的范圍是_,當_時,兩向量共線,當_時,兩向量垂直,記作2平面向量基本定理及坐標表示(1)平面向量基本定理如果是同一平面內的兩個_向量,那么對于這一平面內的任意向量,_一對實數,使_其中,不共線的向量叫做表示這一平面內所有向量的一組_(2)平面向量的正交分解及坐標表示把一個向量分解為兩個_的向量,叫做把向量正交分解(3) 平面向量的坐標表示在平面直角坐標系中,分別取與軸、軸方向相同的兩個單位向量i,j作為基底,對于平面內的一個向量,由平面向量基本定理可知,有且只有
2、一對實數,使,這樣,平面內的任一向量都可由,唯一確定,把有序數對_叫做向量的坐標,記作_,其中_叫做在軸上的坐標,_叫做在軸上的坐標 ,則向量的坐標就是_的坐標,即若, 則A點坐標為_,反之亦成立(O是坐標原點)3平面向量的坐標運算向量加法和減法若則實數與向量的乘積若則向量的坐標若起點終點則 4平面向量共線的坐標表示設,其中,_1.已知平面向量,且,則( )A B C D 2.下列向量組中,能
3、作為平面內所有向量基底的是( )A. B. C. D. 3.已知,則與平行的單位向量為( ).A. B. C. D.4.連續拋擲兩次骰子得到的點數分別為和,記向量,向量,則的概率是( ) A B C
4、 D5.平面向量=(2,-1),=(1,1),=(-5,1),若,則實數k的值為()A2 B. C. D.6.已知A(3,0)、B(0,2),O為坐標原點,點C在AOB內,且AOC45°,設,則的值為( ) A、 B、 C、 D、7.在下列向量組中,可以把向量表示出來的是( )A. B .
5、 C. D. 8.已知直角坐標平面內的兩個向量,使得平面內的任意一個向量都可以唯一分解成,則的取值范圍 9.,若,則 ;若,則 10.向量,若向量與向量共線,則 .11.P是ABC內一點,且滿足條件,設Q為延長線與AB的交點,令,用表示.12. ABC中,BD=DC,AE=2EC,求.13. 已知,且,求M、N及的坐標.14.
6、i、j是兩個不共線的向量,已知=3i+2j,=i+j, =-2i+j,若A、B、D三點共線,試求實數的值15.已知向量,向量. (1)若向量與向量垂直,求實數的值;(2)當為何值時,向量與向量平行?并說明它們是同向還是反向.16.在中,分別是內角的對邊,且,,若.(1)求的大小;(2)設為的面積,求的最大值及此時的值.平面向量基本定理及坐標表示答案BBBABCB8. 9. , 10.211又因為A,B,Q三點共線,C,P,Q三點共線而,為不共線向量故:12.設又又而比較,由平面向量基本定理得:解得:或(舍) ,把代入得:.13.:設,則同理可求,因此14,=-=(-2i+j)-(i+j)=-3i+(1-)jA、B、D三點共線,向量與共線,因此存在實數,使得=,即3i+2j=-3i+(1-)j=-3i+(1-)ji與j是兩不共線向量,由基本定理得:故當A、B、D三點共線時,=3.15.解:,.(1)由向量與向量垂直,得,解得.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 版展覽場地租賃合同典范
- 北師大版七年級上冊第五章 一元一次方程5.4 應用一元一次方程-打折銷售教案
- 初中數學第二章 相交線與平行線單元練習 2024-2025學年北師大版數學七年級下冊
- 1 我與社會教學評一體化表格式 公開課一等獎創新教案 統編版道德與法治八年級上冊
- Brand KPIs for ready-made-food DAucy in Brazil-外文版培訓課件(2025.2)
- 醫療安全不良事件報告制度試題
- 機械制造基礎課件-機械設計中材料的選材與熱處理-元豐
- 二手房交易合同簽訂及履行流程
- 上海商業裝修合同樣本
- 2025合同條款合同的適用范圍和應注意的問題
- 廣東省珠海市2024-2025學年七年級下學期期中考試英語試題(無答案)
- 2024年中國南水北調集團水網發展研究有限公司招聘考試真題
- (四調)武漢市2025屆高中畢業生四月調研考試 語文試卷(含答案詳解)
- 2023年鄭州鐵路職業技術學院單招職業技能考試題庫及答案1套
- 2025年融媒體中心招聘考試筆試試題(60題)附答案
- 湖南省2025屆高三“一起考”大聯考(模擬二)語文試題及參考答案
- 商業地產項目整體經營方案
- 旅行社代訂業務合同模板
- 第二單元 人民當家作主(A卷 基礎夯實)2024-2025學年高中政治統編版必修三單元測試AB卷(含解析)
- 全國高中數學評優課大賽數學賽課教學設計(點評)一等獎作品專輯
- 2025年中國東方航空股份有限公司北京分公司招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論