




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第一章 行列式 1. 利用對角線法則計算下列三階行列式: (1); 解 =2´(-4)´3+0´(-1)´(-1)+1´1´8 -0´1´3-2´(-1)´8-1´(-4)´(-1) =-24+8+16-4=-4. (2); 解 =acb+bac+cba-bbb-aaa-ccc =3abc-a3-b3-c3. (3); 解 =bc2+ca2+ab2-ac2-ba2-cb2 =(a-b)(b-c)(c-a). (4). 解 =x(x+y)y+yx(x+y)+(x+y)yx-y3
2、-(x+y)3-x3 =3xy(x+y)-y3-3x2 y-x3-y3-x3 =-2(x3+y3). 2. 按自然數從小到大為標準次序, 求下列各排列的逆序數: (1)1 2 3 4; 解 逆序數為0 (2)4 1 3 2; 解 逆序數為4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序數為5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序數為3: 2 1, 4 1, 4 3. (5)1 3 × × × (2n-1) 2 4 × × × (2n); 解 逆序數為: 3 2 (1
3、個) 5 2, 5 4(2個) 7 2, 7 4, 7 6(3個) × × × × × × (2n-1)2, (2n-1)4, (2n-1)6, × × ×, (2n-1)(2n-2) (n-1個) (6)1 3 × × × (2n-1) (2n) (2n-2) × × × 2. 解 逆序數為n(n-1) : 3 2(1個) 5 2, 5 4 (2個) × × × × × × (2n-1
4、)2, (2n-1)4, (2n-1)6, × × ×, (2n-1)(2n-2) (n-1個) 4 2(1個) 6 2, 6 4(2個) × × × × × × (2n)2, (2n)4, (2n)6, × × ×, (2n)(2n-2) (n-1個) 3. 寫出四階行列式中含有因子a11a23的項. 解 含因子a11a23的項的一般形式為(-1)ta11a23a3ra4s,其中rs是2和4構成的排列, 這種排列共有兩個, 即24和42. 所以含因子a11a23的項分別是
5、(-1)ta11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44, (-1)ta11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42. 4. 計算下列各行列式: (1); 解 . (2); 解 . (3); 解 . (4). 解 =abcd+ab+cd+ad+1. 5. 證明: (1)=(a-b)3; 證明 =(a-b)3 . (2); 證明 . (3); 證明 (c4-c3, c3-c2, c2-c1得) (c4-c3, c3-c2得) . (4) =(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+c+d
6、); 證明 =(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+c+d). (5)=xn+a1xn-1+ × × × +an-1x+an . 證明 用數學歸納法證明. 當n=2時, , 命題成立. 假設對于(n-1)階行列式命題成立, 即 Dn-1=xn-1+a1 xn-2+ × × × +an-2x+an-1, 則Dn按第一列展開, 有 =xD n-1+an=xn+a1xn-1+ × × × +an-1x+an . 因此, 對于n階行列式命題成立. 6. 設n階行列式D=det(ai
7、j), 把D上下翻轉、或逆時針旋轉90°、或依副對角線翻轉, 依次得 , , , 證明, D3=D . 證明因為D=det(aij), 所以 . 同理可證 . . 7. 計算下列各行列式(Dk為k階行列式): (1), 其中對角線上元素都是a, 未寫出的元素都是0; 解 (按第n行展開) =an-an-2=an-2(a2-1). (2); 解 將第一行乘(-1)分別加到其余各行, 得 , 再將各列都加到第一列上, 得 =x+(n-1)a(x-a)n-1. (3); 解 根據第6題結果, 有 此行列式為范德蒙德行列式. . (4); 解 (按第1行展開) . 再按最后一行展開得遞推公式
8、 D2n=andnD2n-2-bncnD2n-2, 即D2n=(andn-bncn)D2n-2. 于是 . 而 , 所以 . (5) D=det(aij), 其中aij=|i-j|; 解 aij=|i-j|, =(-1)n-1(n-1)2n-2. (6), 其中a1a2 × × × an¹0. 解 . 8. 用克萊姆法則解下列方程組: (1); 解 因為 , , , , ,所以 , , , . (2). 解 因為 , , , , , , 所以, , , , . 9. 問l, m取何值時, 齊次線性方程組有非零解? 解 系數行列式為 . 令D=0, 得 m=0或l=1. 于是, 當m=0或l=1時該齊次線性方程組有非零解. 10. 問l取何值時, 齊次線性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市公共交通信息化建設與應用考核試卷
- 管道工程標準化戰略實施展望與挑戰應對考核試卷
- 港口及航運設施工程合同管理考核試卷
- 租賃市場客戶關系維護與管理考核試卷
- 深海打撈裝備的作業安全標準制定與實施考核試卷
- 滌綸纖維在高端運動品牌的技術創新與市場應用趨勢考核試卷
- 海洋石油鉆探的鉆井工程優化考核試卷
- 生物質能源項目風險評估與管理考核試卷
- 江漢藝術職業學院《數碼圖形處理》2023-2024學年第二學期期末試卷
- 江西旅游商貿職業學院《運動解剖學》2023-2024學年第二學期期末試卷
- 智能桌椅商業計劃書
- 供應商年度評價內容及評分表
- 公務車輛定點加油服務投標方案(技術標)
- 強化學習與聯邦學習結合
- 泵檢驗標準及方法
- 水土保持學試卷 答案
- 變電站工程施工危險點辨識及預控措施(匯編)
- 關于新能源汽車的論文10000字
- 停車場建設工程監理規劃
- 口腔檢查-口腔一般檢查方法(口腔科課件)
- 中型水力發電廠電氣部分初步設計
評論
0/150
提交評論