高考數(shù)學(xué)二輪復(fù)習(xí)精品資料 難點(diǎn)09 立體幾何中的“內(nèi)切”與“外接”問(wèn)題的探討學(xué)案(含解析).doc_第1頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí)精品資料 難點(diǎn)09 立體幾何中的“內(nèi)切”與“外接”問(wèn)題的探討學(xué)案(含解析).doc_第2頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí)精品資料 難點(diǎn)09 立體幾何中的“內(nèi)切”與“外接”問(wèn)題的探討學(xué)案(含解析).doc_第3頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí)精品資料 難點(diǎn)09 立體幾何中的“內(nèi)切”與“外接”問(wèn)題的探討學(xué)案(含解析).doc_第4頁(yè)
高考數(shù)學(xué)二輪復(fù)習(xí)精品資料 難點(diǎn)09 立體幾何中的“內(nèi)切”與“外接”問(wèn)題的探討學(xué)案(含解析).doc_第5頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余2頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2014年高考數(shù)學(xué)二輪復(fù)習(xí)精品資料 難點(diǎn)09 立體幾何中的“內(nèi)切”與“外接”問(wèn)題的探討學(xué)案(含解析)縱觀近幾年高考對(duì)于組合體的考查,重點(diǎn)放在與球相關(guān)的外接與內(nèi)切問(wèn)題上.要求學(xué)生有較強(qiáng)的空間想象能力和準(zhǔn)確的計(jì)算能力,才能順利解答.從實(shí)際教學(xué)來(lái)看,這部分知識(shí)是學(xué)生掌握最為模糊,看到就頭疼的題目.分析原因,除了這類(lèi)題目的入手確實(shí)不易之外,主要是學(xué)生沒(méi)有形成解題的模式和套路,以至于遇到類(lèi)似的題目便產(chǎn)生畏懼心理.本文就高中階段出現(xiàn)這類(lèi)問(wèn)題加以類(lèi)型的總結(jié)和方法的探討.1 球與柱體規(guī)則的柱體,如正方體、長(zhǎng)方體、正棱柱等能夠和球進(jìn)行充分的組合,以外接和內(nèi)切兩種形態(tài)進(jìn)行結(jié)合,通過(guò)球的半徑和棱柱的棱產(chǎn)生聯(lián)系,然后考查幾何體的體積或者表面積等相關(guān)問(wèn)題. 球與正方體發(fā)現(xiàn),解決正方體與球的組合問(wèn)題,常用工具是截面圖,即根據(jù)組合的形式找到兩個(gè)幾何體的軸截面,通過(guò)兩個(gè)截面圖的位置關(guān)系,確定好正方體的棱與球的半徑的關(guān)系,進(jìn)而將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題 例 1 棱長(zhǎng)為1的正方體的8個(gè)頂點(diǎn)都在球的表面上,分別是棱,的中點(diǎn),則直線(xiàn)被球截得的線(xiàn)段長(zhǎng)為( )a b cd 球與長(zhǎng)方體長(zhǎng)方體各頂點(diǎn)可在一個(gè)球面上,故長(zhǎng)方體存在外切球.但是不一定存在內(nèi)切球.設(shè)長(zhǎng)方體的棱長(zhǎng)為其體對(duì)角線(xiàn)為.當(dāng)球?yàn)殚L(zhǎng)方體的外接球時(shí),截面圖為長(zhǎng)方體的對(duì)角面和其外接圓,和正方體的外接球的道理是一樣的,故球的半徑例 2 在長(zhǎng)、寬、高分別為2,2,4的長(zhǎng)方體內(nèi)有一個(gè)半徑為1的球,任意擺動(dòng)此長(zhǎng)方體,則球經(jīng)過(guò)的空間部分的體積為( ) a.b.4c.d. 球與正棱柱例3 正四棱柱的各頂點(diǎn)都在半徑為的球面上,則正四棱柱的側(cè)面積有最 值,為 .2 球與錐體規(guī)則的錐體,如正四面體、正棱錐、特殊的一些棱錐等能夠和球進(jìn)行充分的組合,以外接和內(nèi)切兩種形態(tài)進(jìn)行結(jié)合,通過(guò)球的半徑和棱錐的棱和高產(chǎn)生聯(lián)系,然后考查幾何體的體積或者表面積等相關(guān)問(wèn)題.2.1 球與正四面體解得:這個(gè)解法是通過(guò)利用兩心合一的思路,建立含有兩個(gè)球的半徑的等量關(guān)系進(jìn)行求解.同時(shí)我們可以發(fā)現(xiàn),球心為正四面體高的四等分點(diǎn).如果我們牢記這些數(shù)量關(guān)系,可為解題帶來(lái)極大的方便.例4 將半徑都為的四個(gè)鋼球完全裝入形狀為正四面體的容器里,這個(gè)正四面體的高的最小值為 ( )a. b. 2+ c. 4+ d. 球的外切正四面體,這個(gè)小球球心與外切正四面體的中心重合,而正四面體的中心到頂點(diǎn)的距離是中心到地面距離的3倍.2.2 球與三條側(cè)棱互相垂直的三棱錐球與三條側(cè)棱互相垂直的三棱錐組合問(wèn)題,主要是體現(xiàn)在球?yàn)槿忮F的外接球.解決的基本方法是補(bǔ)形例5 在正三棱錐中,分別是棱的中點(diǎn),且,若側(cè)棱,則正2.3 球與正棱錐 球與正棱錐的組合,常見(jiàn)的有兩類(lèi),一是球?yàn)槿忮F的外接球,此時(shí)三棱錐的各個(gè)頂點(diǎn)在球面上,根據(jù)截面圖的特點(diǎn),可以構(gòu)造直角三角形進(jìn)行求解.二是球?yàn)檎忮F的內(nèi)切球,例如正三棱錐的內(nèi)切球,球與正三棱錐四個(gè)面相切,球心到四個(gè)面的距離相等,都為球半徑這樣求球的半徑可轉(zhuǎn)化為球球心到三棱錐面的距離,故可采用等體積法解決,即四個(gè)小三棱錐的體積和為正三棱錐的體積.例6 在三棱錐pabc中,papb=pc=,側(cè)棱pa與底面abc所成的角為60,則該三棱錐外接球的體積為( ) a b. c. 4d.接球的球心,則. 例7 矩形中,沿將矩形折成一個(gè)直二面角,則四面體的外接球的體積是( )a. b. c. d.3 球與球?qū)€(gè)多個(gè)小球結(jié)合在一起,組合成復(fù)雜的幾何體問(wèn)題,要求有豐富的空間想象能力,解決本類(lèi)問(wèn)題需掌握恰當(dāng)?shù)奶幚硎侄危鐪?zhǔn)確確定各個(gè)小球的球心的位置關(guān)系,或者巧借截面圖等方法,將空間問(wèn)題轉(zhuǎn)化平面問(wèn)題求解.4 球與幾何體的各條棱相切球與幾何體的各條棱相切問(wèn)題,關(guān)鍵要抓住棱與球相切的幾何性質(zhì),達(dá)到明確球心的位置為目的,然后通過(guò)構(gòu)造直角三角形進(jìn)行轉(zhuǎn)換和求解.如與正四面體各棱都相切的球的半徑為相對(duì)棱的一半:.例8 把一個(gè)皮球放入如圖10所示的由8根長(zhǎng)均為20 cm的鐵絲接成的四綜合上面的四種類(lèi)型,解決與球的外切問(wèn)題主要是指球外切多面體與旋轉(zhuǎn)體,解答時(shí)首先要找準(zhǔn)切點(diǎn),通過(guò)作截面來(lái)解決.如果外切的是多面體,則作截面時(shí)主要抓住多面體過(guò)球心的對(duì)角面來(lái)作;把一個(gè)多面體的幾個(gè)頂點(diǎn)放在球面上即為球的內(nèi)接問(wèn)題解決這類(lèi)問(wèn)題的關(guān)鍵是抓住內(nèi)接的特點(diǎn),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論