




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市寶山區通河中學2025屆高三實戰模擬考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.2.函數的圖象大致為()A. B.C. D.3.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.4.已知函數,若有2個零點,則實數的取值范圍為()A. B. C. D.5.已知函數,,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.6.已知且,函數,若,則()A.2 B. C. D.7.若函數的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數的圖像可能是()A. B. C. D.8.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件9.函數在的圖象大致為A. B.C. D.10.下列函數中既關于直線對稱,又在區間上為增函數的是()A.. B.C. D.11.射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數的底數,為被測物厚度,為被測物的密度,是被測物對射線的吸收系數.工業上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質厚度,,結果精確到0.001)A.0.110 B.0.112 C. D.12.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種二、填空題:本題共4小題,每小題5分,共20分。13.若函數為偶函數,則________.14.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為15.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.16.已知函數f(x)=axlnx﹣bx(a,b∈R)在點(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線的參數方程為(為參數).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設和交點的交點為,求的面積.18.(12分)已知函數.(1)求的極值;(2)若,且,證明:.19.(12分)已知等差數列中,,數列的前項和.(1)求;(2)若,求的前項和.20.(12分)設函數.(1)當時,求不等式的解集;(2)當時,求實數的取值范圍.21.(12分)已知函數.(1)當時,解不等式;(2)設不等式的解集為,若,求實數的取值范圍.22.(10分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據題意,求得的坐標,根據點在橢圓上,點的坐標滿足橢圓方程,即可求得結果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.本題考查橢圓離心率的求解,難點在于根據題意求得點的坐標,屬中檔題.2.A【解析】
根據函數的奇偶性和單調性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數,排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A本小題主要考查函數圖像的識別,考查利用導數研究函數的單調區間和極值,屬于中檔題.3.D【解析】
由|AF2|=3|BF2|,可得.設直線l的方程x=my+,m>0,設,,即y1=﹣3y2①,聯立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F1,F2為左、右焦點,則F2(,0),設直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯立①②得,聯立①③得,,即:,,解得:,直線的斜率為,故選D.本題考查直線與雙曲線的位置關系,考查韋達定理的運用,考查向量知識,屬于中檔題.4.C【解析】
令,可得,要使得有兩個實數解,即和有兩個交點,結合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數解,即和有兩個交點,,令,可得,當時,,函數在上單調遞增;當時,,函數在上單調遞減.當時,,若直線和有兩個交點,則.實數的取值范圍是.故選:C.本題主要考查了根據零點求參數范圍,解題關鍵是掌握根據零點個數求參數的解法和根據導數求單調性的步驟,考查了分析能力和計算能力,屬于中檔題.5.C【解析】
對任意的總有恒成立,因為,對恒成立,可得,令,可得,結合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.本題主要考查了根據不等式恒成立求最值問題,解題關鍵是掌握不等式恒成立的解法和導數求函數單調性的解法,考查了分析能力和計算能力,屬于難題.6.C【解析】
根據分段函數的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.本題考查分段函數的應用,由分段函數解析式求自變量.7.B【解析】因為對A不符合定義域當中的每一個元素都有象,即可排除;對B滿足函數定義,故符合;對C出現了定義域當中的一個元素對應值域當中的兩個元素的情況,不符合函數的定義,從而可以否定;對D因為值域當中有的元素沒有原象,故可否定.故選B.8.A【解析】
首先利用二倍角正切公式由,求出,再根據充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應用是解決本題的關鍵,屬于基礎題.9.A【解析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.10.C【解析】
根據函數的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區間上為減函數,則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.本題考查函數基本性質,根據函數的解析式判斷函數的對稱性和單調性,屬于基礎題.11.C【解析】
根據題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數為.故選:C本題主要考查知識的遷移能力,把數學知識與物理知識相融合;重點考查指數型函數,利用指數的相關性質來研究指數型函數的性質,以及解指數型方程;屬于中檔題.12.C【解析】
根據題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數原理計算可得答案.【詳解】解:根據題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.本題考查排列、組合的應用,涉及分步計數原理的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
二次函數為偶函數說明一次項系數為0,求得參數,將代入表達式即可求解【詳解】由為偶函數,知其一次項的系數為0,所以,,所以,故答案為:-5本題考查由奇偶性求解參數,求函數值,屬于基礎題14.【解析】
根據向量共線定理得A,B,C三點共線,再根據點斜式得結果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.15.【解析】
由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.本題考查由三視圖求體積、棱長,關鍵是由三視圖還原原幾何體,是中檔題.16.0【解析】
由題意,列方程組可求,即求.【詳解】∵在點處的切線方程為,,代入得①.又②.聯立①②解得:..故答案為:0.本題考查導數的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)先將曲線的參數方程化為普通方程,再將普通方程化為極坐標方程即可.(2)將和的極坐標方程聯立,求得兩個曲線交點的極坐標,即可由極坐標的含義求得的面積.【詳解】(1)曲線的參數方程為(α為參數),消去參數的的直角坐標方程為.所以的極坐標方程為(2)解方程組,得到.所以,則或().當()時,,當()時,.所以和的交點極坐標為:,.所以.故的面積為.本題考查了參數方程與普通方程的轉化,直角坐標方程與極坐標的轉化,利用極坐標求三角形面積,屬于中檔題.18.(1)極大值為;極小值為;(2)見解析【解析】
(1)對函數求導,進而可求出單調性,從而可求出函數的極值;(2)構造函數,求導并判斷單調性可得,從而在上恒成立,再結合,,可得到,即可證明結論成立.【詳解】(1)函數的定義域為,,所以當時,;當時,,則的單調遞增區間為和,單調遞減區間為.故的極大值為;的極小值為.(2)證明:由(1)知,設函數,則,,則在上恒成立,即在上單調遞增,故,又,則,即在上恒成立.因為,所以,又,則,因為,且在上單調遞減,所以,故.本題考查函數的單調性與極值,考查了利用導數證明不等式,構造函數是解決本題的關鍵,屬于難題.19.(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數列,可求得的通項;(2)由(1)可知,,分n為偶數和n為奇數分別求得.【詳解】(1)由條件知,,,當時,,即,當時,,是以1為首項,2為公比的等比數列,;(2)由(1)可知,,當n為偶數時,當n為奇數時,綜上,本題考查等差數列和等比數列的通項的求得,以及其前n項和,注意分n為偶數和n為奇數兩種情況分別求得其數列的和,屬于中檔題.20.(1)(2)當時,的取值范圍為;當時,的取值范圍為.【解析】
(1)當時,分類討論把不等式化為等價不等式組,即可求解.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,分類討論,即可求解.【詳解】(1)當時,,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,所以當時,的取值范圍為;當時,的取值范圍為.本題主要考查了含絕對值的不等式的求解,以及絕對值三角不等式的應用,其中解答中熟記含絕對值不等式的解法,以及合理應用絕對值的三角不等式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21.(1)或;(2)【解析】
(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結果.(2)利用等價轉化的思想,可得不等式在恒成立,然后解出解集,根據集合間的包含關系,可得結果.【詳解】(1)當時,原不等式可化為.①當時,則,所以;②當時,則,所以;⑧當時,則,所以.綜上所述:當時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數的取值范圍是.本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應用,同時掌握等價轉化的思想,屬中檔題.22.(1)見解析;(2)【解析】
(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南開18語文高三第一次月考作文
- 電子測量技術在海洋開發中的應用考核試卷
- 生態保護與草原生態治理考核試卷
- 電氣設備絕緣測試考核試卷
- 天津市西青區張窩中學2024?2025學年高一下學期第一次月考 數學試題(含解析)
- 規范的采血流程 2
- 山東省濟南市重點中學2025屆高中畢業班第二次質量檢測試題英語試題文試題含解析
- 山東省泰安市寧陽縣重點名校2024-2025學年初三下學期第三次四校聯考物理試題試卷含解析
- 萊蕪職業技術學院《水工建筑材料》2023-2024學年第二學期期末試卷
- 吉林省長春市榆樹市一中2025屆高三下學期第四次(1月)月考英語試題試卷含解析
- 2025年上海市松江區中考數學二模試卷(含解析)
- 中國科學技術交流中心招聘筆試真題2024
- 2025年北京京能清潔能源電力股份有限公司招聘筆試參考題庫含答案解析
- 2025年上海市閔行區高三語文二模試卷及答案解析
- 創新獎申請材料撰寫指南與范文
- 中華人民共和國學前教育法解讀
- 美容師考試相關法律法規的知識要點試題及答案
- 2025年形勢與政策-加快建設社會主義文化強國+第二講中國經濟行穩致遠
- 激光雷達筆試試題及答案
- 《運動處方》課件-高血壓人群運動處方案例
- 2024年出版專業資格考試《基礎知識》(中級)真題及答案
評論
0/150
提交評論